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ABSTRACT. The notion of a conucleus provides a natural extension of topological
interior operators (a.k.a. S4 modal operators) on Boolean algebras to residuated
lattices. Using algebraic methods involving well-behaved embeddings of finite
partial subalgebras, we establish a number of decidability results for varieties
of (bounded) integral residuated lattices equipped with a conucleus. We show
that the variety of Abelian ℓ-group cones equipped with a conucleus (or a meet
preserving conucleus, or a join preserving conucleus) has a decidable universal
theory. As a consequence, so do MV-algebras equipped with a (meet preserving,
join preserving) conucleus and Abelian ℓ-groups equipped with a negative (meet
preserving, join preserving) conucleus. The Montagna–Tsinakis representation
of cancellative commutative residuated lattices as conuclear images of Abelian
lattice-ordered groups then yields as a corollary that the variety of integral can-
cellative commutative residuated lattices and the subvarieties of fully distributive
ones and of semilinear ones also have a decidable universal theory. This settles
a long-standing open problem in the first case and recovers a result of Horčı́k in
the last case. We also show that given a variety of integral residuated lattices with
locally finite monoid reducts which enjoys the Finite Embeddability Property, this
property is inherited by the variety of its conuclear expansions.

1. INTRODUCTION

Classical modal logic S4, one of the most distinguished denizens of the zoo
of modal logics, is the modal logic of preorders, or equivalently the logic of the
interior operator on topological spaces [16, 10]. Its algebraic semantics is given
by Boolean algebras equipped with an interior operator 2 satisfying the equations
2(x ∧ y) = 2x ∧ 2y and 21 = 1. When we move beyond classical logic to the
study of substructural logics [25, 36] (a wide family which among others includes
super-intuitionistic logics, fuzzy logics, and relevance logics), Boolean algebras are
replaced by residuated lattices: algebras of the form A := ⟨A,∧,∨, ·, 1, \, /⟩ with a
lattice structure, a multiplicative monoidal structure, and two division operations
(also called residuals) satisfying the so-called residuation law. Besides Boolean
algebras, structures like Heyting algebras, MV-algebras, Sugihara monoids, and
lattice-ordered groups (ℓ-groups for short) are all examples of residuated lattices.
(In Boolean algebra and Heyting algebras, products and meets coincide.) What is
the appropriate notion of an S4-like modal operator on residuated lattices?

From the perspective of algebraic semantics, which we confine our attention to
throughout this paper, the notion of a conucleus has proved to be a very fruitful
answer. A conucleus is an interior operator on a residuated lattice whose image is
a submonoid, or equivalently an interior operator 2 which satisfies the inequalities
2x · 2y ≤ 2(x · y) and 1 ≤ 21. Conuclei on Heyting algebras (in particular, on
Boolean algebras) are precisely the interior operators which preserve finite meets.

1



2 ADAM PŘENOSIL

The importance of this definition stems from the fact that conuclei provide a
convenient and flexible way of constructing new residuated lattices. The image of
a conucleus 2 on a residuated lattice A always carries the structure of a residuated
lattice A2, though it need not be a subalgebra of A: joins and products in A2
coincide with those in A but meets and divisions in A2 are 2-images of those
in A. Residuated lattices of the form A2 will be called conuclear images of A.

For example, the Heyting algebra of all upsets of a poset ⟨X,≤⟩ arises as a
conuclear image of the Boolean algebra of all subsets of the set X, where the co-
nucleus is the interior operator with respect to the topology of upward closed sets.

Another important instance of this construction is the negative cone A− of a
residuated lattice A, which is A2 for the conucleus 2x := 1∧ x. The negative cone
of A is thus a residuated lattice over the set {a ∈ A | a ≤ 1}. For example, the
Abelian ℓ-group of reals R can be seen as a residuated lattice where the monoidal
operation is given by addition and the residuals by subtraction. Its negative cone
is a residuated lattice R− where the monoidal operation is given by addition and
the residuals by truncated subtraction x ⊖ y := min(x − y, 0). This is an example
of an Abelian ℓ-group cone (the negative cone of an Abelian ℓ-group).

Conuclei and conuclear images are fundamental, either explicitly or implicitly,
to the structure theory of numerous classes of residuated lattices. The conuclear
image construction clearly preserves all universal sentences involving only joins
and products (such as integrality, commutativity, and cancellativity), but it may
fail to preserve those which involve meets or divisions (such as distributivity or
involutivity). This leads to representation theorems which describe a given class
of (bounded) residuated lattices as precisely the class C(K) of all conuclear images
of some smaller class of (bounded) residuated lattices K. The earliest theorem
of this sort is the result of McKinsey and Tarski [35, Theorem 1.15] that Heyting
algebras are precisely the conuclear images of Boolean algebras, since the free
Boolean extension of a Heyting algebra H can be expanded by a conucleus whose
image is H. We may state this result more succinctly as: C(BA) = HA.

A more recent example, which will play an important role in this paper, is the
result of Montagna and Tsinakis [37, Corollar 5.2] that the conuclear images of
Abelian ℓ-groups are precisely the cancellative commutative residuated lattices.
Further examples of representation theorems in this genre restrict to particular
kinds of conuclei, such as negative cones. For instance, the negative cones of
(Abelian) ℓ-groups [5, Theorem 6.2] are precisely the cancellative divisible integral
(commutative) residuated lattices, and the negative cones of bounded idempotent
involutive residuated lattices are precisely Heyting algebras [22, Fact 4.34].

This paper deals with the problem of deciding the validity of equations, or more
generally of universal sentences, in classes of residuated lattices equipped with
a conucleus. That is, given a class K of (bounded) residuated lattices, we wish
to know whether the class Cx(K) of all expansions of K-algebras by a conucleus
(conuclear K-algebras for short) has a decidable equational or universal theory. More
precisely, our methods are restricted to integral residuated lattices (IRLs for short),
where the monoidal unit 1 is also the top element of the lattice reduct.

The algebraic method of choice for proving decidability is to establish the Finite
Model Property (FMP for short) or the Finite Embeddability Property (FEP for short),
which state that each equation or each universal sentence which fails in a class K
in fact fails in some finite K-algebra [36]. The earliest result of this sort is the proof
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of the FEP for the variety of Boolean algebras equipped with a conucleus (a.k.a.
S4 modal algebras) due to McKinsey [34, Theorem 12], followed by the proof of
the FEP for Heyting algebras due to McKinsey and Tarski [35, Theorem 1.11]. We
may state this result more succinctly as: Cx(BA) has the FEP. We show that this
result extends, in a uniform fashion, beyond the variety of Boolean algebras. For
example, if K is a variety of Heyting algebras with the FEP, then the variety of
conuclear K-algebras has the FEP.

Conuclear IRLs inherit the FEP (Theorem 3.10). Consider a universal class K of
(bounded) IRLs with locally finite monoid reducts. If K has the FEP, then so does Cx(K).

The FEP for bounded conuclear IRLs was already studied by Amano [2, 3], who
showed that the whole variety has the FEP (see also [44, Theorem 13]).

The main contribution of this paper is to show that the varieties of conuclear
MV-algebras and of conuclear Abelian ℓ-group cones have a decidable univer-
sal theory. This further implies that Abelian ℓ-groups equipped with a negative
conucleus (a conucleus whose image is contained in the negative cone) also have
a decidable universal theory. While conuclear Abelian ℓ-groups and conuclear
Abelian ℓ-group cones do not, for trivial reasons, enjoy the FEP (there are no non-
trivial finite Abelian ℓ-groups and ℓ-group cones), conuclear MV-algebras do. The
decidability result for conuclear Abelian ℓ-group cones may be proved directly,
but it may also be derived as a consequence of the FEP for conuclear MV-algebras.

We further prove analogous results for meet preserving conuclei (∧-conuclei for
short) and join preserving conuclei (∨-conuclei for short), defined as those conuclei
which satisfy 2(x ∧ y) = 2x ∧ 2y and 2(x ∨ y) = 2x ∨ 2y, respectively. The
notation C∧, Cx∧ and C∨, Cx∨ is self-explanatory. For ∧-conuclei we obtain entirely
analogous results, for ∨-conuclei the only difference is that while the variety of ∨-
conuclear MV-algebras has a decidable universal theory, it does not have the FEP.

Although we shall not explicitly develop this logical angle here, each of our
decidability results is equivalent to the decidability of the deducibility problem
(the problem of deciding whether a sequence of propositional formulas implies a
propositional formula) for a certain non-classical modal logic, namely for certain
variants of S4 Łukasiewicz logic and S4 modal Abelian logic. Just like S4 is one
of the most important classical modal logics, Łukasiewicz logic (which replaces
the classical two-element set of truth values {0, 1} by the real unit interval [0, 1]
with a suitable MV-algebraic structure) is among the best-studied non-classical
logics [17, 39]. Studying S4-like modal logics over a Łukasiewicz non-modal basis
is therefore extremely natural. For comparison with other existing decidability and
undecidability results for many-valued modal logics, the reader may consult [46].

Decidability results for conuclear residuated lattices (Theorems 5.10, 7.22, 5.15,
7.24, 6.10, 7.31, 8.4). The following varieties have a decidable universal theory:

(i) Abelian ℓ-group cones with a conucleus,
(ii) Abelian ℓ-group cones with a ∧-conucleus,

(iii) Abelian ℓ-group cones with a ∨-conucleus,
(iv) Abelian ℓ-groups with a negative conucleus,
(v) Abelian ℓ-groups with a negative ∧-conucleus,

(vi) Abelian ℓ-groups with a negative ∨-conucleus,
(vii) MV-algebras with a conucleus.

(viii) MV-algebras with a ∧-conucleus.
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(ix) MV-algebras with a ∨-conucleus.

The Finite Embeddability Property for conuclear MV-algebras (Theorem 6.8,
Theorem 7.30, Corollary 8.6).

(i) The variety of MV-algebras with a conucleus has the FEP.
(ii) The variety of MV-algebras with a ∧-conucleus has the FEP.

(iii) The variety of MV-algebras with a ∨-conucleus does not have the FEP.

We are now in a position to derive, as a corollary, the decidability results which
in fact formed the original impetus for the present work. Namely, it is straight-
forward to observe that for any class of residuated lattices K, the decidability of
the universal theory of Cx(K) implies the decidability of the universal theory of
C(K), and likewise for Cx∧, C∧ and for Cx∨, C∨.

The classes of conuclear, ∧-conuclear, and ∨-conuclear images of Abelian ℓ-
groups and therefore also of Abelian ℓ-group cones were described by Montagna
and Tsinakis [37] in their seminal study of conuclei on ℓ-groups. They in fact
established a number of categorical equivalences between classes of conuclear ℓ-
groups and classes of cancellative residuated lattices, but we shall not need the
full strength of these equivalences here.

Let us now introduce the terminology required to describe these classes of
conuclear images. We denote the variety of integral commutative (x · y = y · x)
residuated lattices by ICRL. An ICRL is fully distributive if its satisfies the equations

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x · (y ∧ z) = (x · y) ∧ (x · z).

An ICRL is called semilinear if it is isomorphic to a subdirect product of totally
ordered ICRLs, or equivalently if it satisfies the equation (x\y) ∨ (y\x) = 1. A
cancellative ICRLs is semilinear if and only if it satisfies x\(y ∨ z) = (x\y)∨ (x\z).
Recall that AbLG− denotes the variety of Abelian ℓ-group cones.

The Montagna–Tsinakis representation ([37]).
(i) C(AbLG−) is the variety of cancellative ICRLs.

(ii) C∧(AbLG
−) is the variety of fully distributive cancellative ICRLs.

(iii) C∨(AbLG
−) is the variety of semilinear cancellative ICRLs.

Given the Montagna–Tsinakis representation, the above decidability results im-
mediately yield the following corollaries.

Decidability results for cancellative residuated lattices (Theorems 5.18, 7.27, 8.4).
The following varieties have a decidable universal theory:

(i) cancellative ICRLs.
(ii) fully distributive cancellative ICRLs.

(iii) semilinear cancellative ICRLs [29].

This settles the long-standing problem of whether the variety of cancellative
ICRLs has a decidable equational theory [36, Problem 26], which had remained
open since the first systematic study of cancellative residuated lattices in [5]. This
problem had not seen substantial progress since Horčı́k [29] settled the semilinear
case in 2006.1 All of the other decidability results above besides Horčı́k’s are new.

1Horčı́k [29] does not explicitly discuss universal theories, but for a quasivariety the decidability of
the quasi-equational theory is equivalent to the decidability of the universal theory. What he in effect
proves is that the universal class of totally ordered cancellative ICRLs has a decidable universal theory.
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1.1. Summary. Now that we have laid out our main results, in the remainder of
this introductory section we provide a bird’s eye view of the whole paper.

All of the universal classes which feature in our decidability results are finitely
axiomatizable, so their universal theories are recursively enumerable, given the
existence of a proof calculus for universal sentences [42]. It remains to show that
they are also co-recursively enumerable by finding suitable generating classes.

Accordingly, the main problem that we need to tackle in this paper is the fol-
lowing, where IRL denotes the variety of integral residuated lattices:

given a variety V ⊆ IRL, find a useful generating class for Cx(V).

We shall be concerned exclusively with finding a class that generates Cx(V) as a
universal class: recall that the universal class generated by a class of algebras K in
a given signature is U(K) := ISPU(K). Moreover, our strategy will be to reduce
this problem to one which is stated purely in the language of residuated lattices
(rather than conuclear residuated lattices). The problem thus becomes:

given a variety V ⊆ IRL, find a useful class K ⊆ V such that Cx(V) = UCx(K).

The bulk of the present paper will be spent on trying to solve this problem. The
decidability results listed above then follow as fairly straightforward corollaries of
such generation results.

The key to the problem lies in identifying the right analogy between the class
operators U and UCxS. A classical result states that given an algebra A and a
class of algebras K in the same signature, A ∈ U(K) if and only if each finite
partial subalgebra of A has an embedding into K. This means that for each finite
set X ⊆ A there is an injective map ι : X ↪→ B into some B ∈ K such that for each
n-ary operation ◦ in the signature and for all a1, . . . , an, b ∈ X

◦A(a1, . . . , an) = b =⇒ ◦B(ι(a1), . . . , ι(an)) = ι(b).

The entire paper now hinges on the following simple lemma, which replaces
embeddings by what we call π-embeddings. These are embeddings which further
require that for all a1, . . . , an, b ∈ X

a1 · . . . · an ≤A b ⇐⇒ ι(a1) · . . . · ι(an) ≤B ι(b).

UCxS via π-embeddings (Lemma 3.7). If each finite partial subalgebra of A ∈ IRL
has a π-embedding into K ⊆ IRL, then CxS(A) ⊆ UCxS(K).

The above lemma encapsulates all that we need to know about conuclei to prove
the desired generation result for conuclear Abelian ℓ-group cones. The proof will
work directly with π-embeddings rather than with conuclei.

A common method of proving that a finitely axiomatizable universal class K
has a decidable universal theory is to establish the Finite Embeddability Property or
the FEP for short. This property states that each universal sentence which fails in
K in fact fails in some finite K-algebra. If K is a universal class, this is equivalent to
saying that K = U(Kfin), where Kfin is the subclass of finite K-algebras.

As a consequence of the above lemma on π-embeddings, Cx(K) and C(K)
sometimes inherit the FEP from K. This occurs for example when K is an n-potent
subvariety of ICRL with the FEP.

Moreover, his methods would have sufficed to prove the stronger claim that the universal class of
totally ordered conuclear Abelian ℓ-group cones have a decidable universal theory, but unfortunately
the use of conuclei remains only implicit in [29].
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FEP for conuclear IRLs (Theorem 3.10). Consider a universal class K ⊆ IRL with
locally finite monoid reducts. If K has the FEP, then so do Cx(K) and C(K).

The above result unifies a number of results which have previously been proved
on a case by case basis. For example, the variety of Boolean algebras clearly has the
FEP by virtue of being locally finite. By the above theorem, the variety of S4 modal
algebras and the variety of Heyting algebras then inherit the FEP, and the variety
of conuclear Heyting algebras in turn inherits the FEP from Heyting algebras. We
thereby get in one fell swoop the classical results of McKinsey [34] (for S4 modal
algebras) and McKinsey and Tarski [35] (for Heyting algebras), as well as the more
recent result of de Groot and Shillito [21] (conuclear Heyting algebras). We may
also observe that the variety of conuclear Gödel algebras inherits the FEP from the
locally finite variety of Gödel algebras.

In the more special case where K-algebras themselves are locally finite, we may
also show that the class mK defined in [18] has the FEP (Theorem 3.6). This class is
related to the class of monadic K-algebras and thereby to one-variable fragments
of first-order logics, though it does necessarily coincide with monadic K-algebras
as normally understood (see [18] for more detail).

The observant reader will have noticed that in fact Heyting algebras and Gödel
algebras are not varieties of residuated lattices, but rather varieties of bounded
residuated lattices. While we state our results for integral residuated lattices,
they hold equally well for bounded integral residuated lattices, with identical
or even simpler proofs. Since at no point in the paper does the presence of a
bottom constant create any complications, we take the liberty of omitting explicit
formulations of the obvious bounded variants of our results.

We now set our sights on our main results. Its proof consists of three parts.
The first two of these, handled in Section 4, apply to the variety ICRL of integral
commutative residuated lattices in general. The first part shows that we may
replace π-embeddings by a broader class of maps which we call ω-embeddings,
namely embeddings ι : X ↪→ B which require that for all a, b, c ∈ X

a · bn ≰A c for all n ∈ N =⇒ ι(a) · ι(b)n ≰B ι(c) for all n ∈ N.

In fact, it suffices to work with an even broader class of maps which we call weak
ω-embeddings. These merely require that for all b, c ∈ X

bn ≰A c for all n ∈ N =⇒ ι(b)n ≰B ι(c) for all n ∈ N.

The proof of the following theorem ultimately relies on Higman’s Lemma [28].

UCxS via (weak) ω-embeddings (Theorem 4.5). If each finite partial subalgebra of
A ∈ ICRL has a (weak) ω-embedding into K ⊆ ICRL, then CxS(A) ⊆ UCxS(K).

Next, we reduce the problem of finding ω-embeddings of arbitrary algebras
from a variety V ⊆ ICRL into K to the problem of finding ω-embeddings of alge-
bras from Vfsi (the class of finitely subdirectly irreducible algebras in V) into K. We
use Pfin(K) to be denote the class of all products of finite families of K-algebras.

Reduction to Vfsi (Theorems 4.9 and 4.11). Consider a variety V ⊆ ICRL. If each finite
partial subalgebra of each A ∈ Vfsi has a (weak) ω-embedding into a class K ⊆ ICRL, then

Cx(V) = UCxSPfin(K).
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Thus for each variety V ⊆ ICRL

Cx(V) = UCxSPfin(Vfsi).

The final part of the proof, to which we devote Section 5, consists in applying
the above reduction to the case where V is the variety of Abelian ℓ-group cones.
Then Vfsi is the class of totally ordered Abelian ℓ-group cones. It remains to
determine the target class K and show that each finite partial subalgebra of each
totally ordered Abelian ℓ-group cone indeed has a weak ω-embedding into K.

This step relies on the Hahn representation of totally ordered Abelian groups.
Given a chain Γ and a totally ordered Abelian group G, let Lex(Γ, G) be the lexico-
graphic power of G determined by Γ (see Section 5 for a proper definition). In par-
ticular, Lex(n, G) denotes the n-th lexicographic power of G. The totally ordered
additive groups of reals and of integers are denoted by R and Z, respectively.

The Hahn representation ([27, 4]). Each totally ordered Abelian group embeds into
Lex(Γ, R) for some chain Γ.

Armed with the Hahn representation, it is not difficult to show that each finite
partial subalgebra of each totally ordered Abelian ℓ-group cone has a weak ω-
embedding into Lex(n, Z) for some n ∈ N. This concludes the proof of the main
generation result. Deriving the decidability of the universal theory of conuclear
Abelian ℓ-group cone from the generation result is a fairly simple matter.

Throughout the next sequence of results, let AbLG denote the variety of Abelian
ℓ-groups, AbLG− the variety of Abelian ℓ-group cones, and MV the variety of
MV-algebras. More generally, K− denotes the class of negative cones of algebras
from K. The class operator Cx− (Cx−∧ ) takes all expansions of a given class of
residuated lattices by a negative conucleus (∧-conucleus).

Generation results involving conuclei (Theorems 5.9, 5.14, 5.17).
(i) Cx(AbLG−) is generated as a universal class by CxPfin(Z

−).
(ii) Cx−(AbLG) is generated as a universal class by Cx−Pfin(Z).

(iii) C(AbLG−) is generated as a universal class by CPfin(Z
−).

(The class C(AbLG−) is the variety of cancellative ICRLs [37].)

Going through the proof of the above theorem and replacing the π-embeddings
by a more restrictive class of embeddings which we call ∧π-embeddings yields an
analogous result for ∧-conuclei. This is the content of Section 7.

Generation results involving ∧-conuclei (Theorems 7.20, 7.23, 7.26).
(i) Cx∧(AbLG

−) is generated as a universal class by Cx∧Pfin(Z
−).

(ii) Cx−∧ (AbLG) is generated as a universal class by Cx−∧ Pfin(Z).
(iii) C∧(AbLG

−) is generated as a universal class by C∧Pfin(Z
−).

(The class C∧(AbLG
−) is the variety of fully distributive cancellative ICRLs [37].)

We also derive the following results for ∨-conuclei in Section 8, where

Lex := {Lex(n, Z) | n ∈ N}.

Generation results involving ∨-conuclei (Theorem 8.4).
(i) Cx∨(AbLG

−) is generated as a quasivariety by Cx∨S(Lex−).
(ii) Cx−∨ (AbLG) is generated as a quasivariety by Cx−∨ SPfin(Lex).

(iii) C∨(AbLG
−) is generated as a quasivariety by C∨SPfin(Lex

−).
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(The class C∨(AbLG
−) is the variety of semilinear cancellative ICRLs [37].)

Analogous results for MV-algebras, to which we devote Section 6, rely on the
unit interval construction. The unit interval of an integral residuated lattice A
induced by u ∈ A is a bounded integral residuated lattice over the interval [u, 1]A
of A which inherits the lattice structure and division from A and but replaces the
multiplication of A by x ◦ y := u ∨ (x · y). The unit intervals of a conuclear integral
residuated lattice with a conucleus 2 are the unit intervals [u, 1]A for u ∈ A2
equipped with the restriction of the conucleus 2 to [u, 1]A.

To derive generation results for conuclear MV-algebras from generation results
for Abelian ℓ-group cones, it will suffice to apply the classical representation result
of Mundici [38] together with an unpublished result of Young [48] which states
that Cx and Int commute in the context of distributive integral residuated lattices.
The difficult part of Young’s result is showing that a conucleus on an interval of
a distributive integral residuated lattice A extends to a conucleus on A. Given a
class K of (conuclear) integral residuated lattices, we denote the class of all unit
intervals of K-algebras by Int(K) in the following.

The Mundici representation ([38]). MV-algebras are precisely the unit intervals of
Abelian ℓ-group cones: MV = Int(AbLG−).

The Young representation ([48]). Conuclear MV-algebras are precisely the unit inter-
vals of conuclear Abelian ℓ-group cones: Cx(MV) = Int(Cx(AbLG−)).

The class of finite MV-algebras will be denoted by MVfin.

Generation results involving MV-algebras (Theorems 6.8, 7.30, 8.4).

(i) Cx(MV) is generated as a universal class by Cx(MVfin), i.e. it has the FEP.
(ii) Cx∧(MV) is generated as a universal class by Cx∧(MVfin), i.e. it has the FEP.

(iii) Cx∨(MV) is generated as a quasivariety by CxS(Int(Lex−)).

The class Cx∨(MV) does not have the FEP (Corollary 8.6).

1.2. Open problems. While the results of this paper constitute a significant ad-
vance in our understanding of cancellative residuated lattices, conuclei on Abelian
ℓ-groups, and conuclear integral residuated lattices in general, they are also con-
strained by several limitations. A number of further directions in which these
results may be developed further therefore naturally offer themselves.

The first direction is to obtain uniform FEP theorems for varieties of conuclear
integral residuated lattices beyond the case of locally finite monoid reducts. We
know that the methodology of Blok and van Alten [11] applies to conuclear IRLs,
since it was used by Amano [2, 3] to prove that the variety of all bounded conuclear
IRLs has the FEP (see also [44, Theorem 13]). However, it remains to develop
this direction further. In particular, a major result for IRLs due to Galatos and
Jipsen [24, Theorem 3.18] states that all varieties of IRLs axiomatized by equations
in the signature {∨, ·, 1} have the FEP. The proof uses the technology of residuated
frames developed in [24].

Open Problem 1. Adapt the technology of residuated frames to get uniform FEP results
beyond the case of locally finite monoid reducts. Does each variety of conuclear integral
residuated lattices axiomatized by equations in the signature {∨, ·, 1} satisfy the FEP?
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A second direction is to determine the precise computational complexity of
the equational and universal theories whose decidability we prove in this paper.
Looking at their lattice reducts suffices to determine that all of these theories are
co-NP-hard: the lattice fragment of the equational theory of cancellative ICRLs is
the equational theory of lattices [41, Corollary 4.3], while the lattice of fragment of
the equational theories of all the other varieties involved in our decidability results
is the equational theory of distributive lattices. Both of these equational theories
are known to be co-NP-complete (see [43, 19, 12] and [30]).

The universal theory of Abelian ℓ-groups is also co-NP-complete [47], and con-
sequently the same holds for the universal theories of Abelian ℓ-group cones and
of MV-algebras (by Lemma 2.7 and its analogue for nuclear images). On the other
hand, the equational theory of conuclear Boolean algebras (S4 modal algebras) is
PSPACE-complete [31]. Beyond the Abelian case, the universal theory of ℓ-groups
is known to be undecidable [26].

Open Problem 2. What is the computational complexity of the equational or the univer-
sal theory of Abelian ℓ-group cones with a (meet preserving, or join preserving) conucleus?
What is the computational complexity of the equational or the universal theory of (fully
distributive, or semilinear) integral cancellative commutative residuated lattices?

A third direction is to go beyond the integral case, which constitutes the most
substantial limitation of the methodology developed in this paper. While the
Montagna–Tsinakis representation extends beyond the integral case, our methods
do not. The following questions thus remain unsolved.

Open Problem 3. Do the following classes have a decidable universal theory?
(i) Abelian ℓ-groups with a conucleus (∧-conucleus, ∨-conucleus),

(ii) (fully distributive, semilinear) cancellative commutative residuated lattices,
(iii) totally ordered Abelian ℓ-groups with a conucleus,
(iv) totally ordered cancellative commutative residuated lattices.

Finally, the decidability of the universal theories of Cx(MV), Cx∧(MV), and
Cx∨(MV) implies that C(MV), C∧(MV), and C∨(MV) also have decidable universal
theories. However, we lack an intrinsic description of these classes. The problem
of describing C(MV) was already posed in [36, Problem 10].

Open Problem 4. Describe the classes C(MV), C∧(MV), and C∨(MV).

A more modest question also arises naturally in connection with our results.
Given a variety V ⊆ ICRL, we suspect that in general the class C(V) of all conuclear
images of V-algebras need not be a variety or even a quasivariety. However, we
do not have an explicit counter-example.

Open Problem 5. Find a variety V ⊆ ICRL such that C(V) is not closed under S

(under H), or prove that no such variety exists. Do the same for C∧ and C∨.

2. PRELIMINARIES

2.1. Order theory. Given a subset X of some poset P, we use the notation ↓ X for
the downset and the notation ↑ X for the upset generated by X. That is,

↓ X := {p ∈ P | p ≤ x for some x ∈ X},

↑ X := {p ∈ P | p ≥ a for some x ∈ X},
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with ↓ x := ↓{x} and ↑ x := ↑{x} for x ∈ P. An upset is principal if it has the form
↑ x for some x ∈ P. It is finitely generated if it has the form ↑ X for some finite set X,
or equivalently if it is a finite union of principal upsets. The upsets of P ordered
by inclusion form a bounded distributive lattice Up P.

The set X is coinitial if for each p ∈ P it intersects ↓ p, i.e. if for each p ∈ P there
is some x ∈ X with x ≤ p. The set of maximal elements of X will be denoted by
max X. A lower bound of X is some p ∈ P such that p ≤ x for each x ∈ X.

An interior operator on a poset P is an order-preserving map 2 : P → P such
that 22x = 2x ≤ x for each x ∈ P. A closure operator on a poset P is an order-
preserving map 3 : P → P such that 33x = 3x ≥ x for each x ∈ P.

A totally ordered set or a chain is a poset where for all x and y either x ≤ y or
y ≤ x. A discretely ordered set or an antichain is a poset where x ≤ y implies x = y
for all x and y. In other words, an antichain is a set where no two distinct elements
are comparable.

2.2. Universal algebra. We now review some basic terminology and notation of
universal algebra. The reader may consult [13, 6] for more detail.

We use H, I, S, P, Pfin, PU to denote closure of a class of algebras under
homomorphic images, isomorphic images, products, finite products, and ultra-
products. Here and throughout the paper, by a class of algebras we always mean a
class in some common algebraic signature consisting of finitary function symbols.
Algebras which belong to a class K will also be called K-algebras for short. The
subalgebra of an algebra A generated by a set X ⊆ A will be denoted by SgA X.

A (quasi)equational class or (quasi)variety is a class of algebras axiomatized by a
set of (quasi)equations, while a universal class is a class of algebras axiomatized by
a set of universal sentences. The universal class generated by a class of algebras
K is U(K) := ISPU(K), while the quasiequational class generated by a class of
algebras K is Q(K) := ISPPU(K). Given a variety V, its class of finitely subdirectly
irreducible algebras will be denoted by Vfsi. Each variety V satisfies V = ISP(Vfsi).

Lemma 2.1. A quasivariety has a decidable universal theory if and only if it has a decid-
able quasi-equational theory.

Proof. A class closed under finite products satisfies a universal sentence ϕ if and
only if it satisfies at least one of its finitely many “sub-quasi-equations”. □

A partial algebra A is a set A equipped for each n-ary function symbol ◦ (in a
given signature) with a partial n-ary operation ◦A on A, i.e. a function ◦A : X → A
for some X ⊆ An. An embedding of partial algebras ι : A ↪→ B is an injective map
ι : A ↪→ B between their universes such that for each n-ary function symbol ◦

◦A(a1, . . . , an) = a for a, a1, . . . , an ∈ A =⇒ ◦B(ι(a1), . . . , ι(an)) = ι(a).

An embedding into a class of partial algebras K is an embedding into some B ∈ K.
Given a (partial) algebra A and a set X ⊆ A, the restriction of A to X is the

partial algebra A|X with universe X whose operations are the restrictions of the
operations of A. That is, ◦A|X (a1, . . . , an) := b for a1, . . . , an, b ∈ X if and only if
◦A(a1, . . . , an) = b, otherwise ◦A|X (a1, . . . , an) is undefined in A|X . Algebras of the
form A|X will be called partial subalgebras of A.
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Theorem 2.2 (Universal classes and partial embeddings [32, §8.3, Theorem 2]).
Let A be an algebra and K be a class of algebras. Then A ∈ U(K) if and only if each finite
partial subalgebra of A embeds into K.

We say that a class of algebras K has the finite embeddability property, or the FEP
for short, if it is included in the universal class generated by its finite members, or
equivalently if each finite partial subalgebra of each algebra A ∈ K embeds into
some finite algebra in K. In particular, a universal class of algebras K has the FEP
if it is generated as a universal class by its finite members.

The FEP provides a useful method for proving the decidability of the universal
theory of a class of algebras in a finite algebraic signature. See [36, Chapter 9] for
a more detailed discussion of the FEP.

Theorem 2.3 (Decidability via the FEP).
Let K be a universal class in a finite algebraic signature. If K is finitely axiomatizable and
has the FEP, then the universal theory of K is decidable.

Proof. The finiteness of the algebraic signature ensures that the notion of the uni-
versal theory being decidable is unproblematic. In particular, the universal theory
of K is decidable if and only if this theory and its complement (in the set of all
universal sentences in the signature of K) are both recursively enumerable.

Suppose that K is axiomatized by some finite set of universal sentences Σ. The
universal theory of K is recursively enumerable by the completeness theorem of
Quackenbush [42]: if a universal sentence is valid in K, then it has a proof from
the finite set Σ in a certain proof calculus. On the other hand, the complement of
the universal theory of K is also recursively enumerable by the FEP: a universal
sentence is not valid in K if and only if it fails in some valuation on some finite
algebra satisfying Σ. But we may enumerate all finite algebras which satisfy the
finite set Σ and all valuations on these algebras. □

A variety of algebras V has the finite model property or the FMP for short if it
is generated by its finite members. For varieties which have equationally definable
principal congruences or EDPC for short, the FMP and the FEP coincide.2

Theorem 2.4 (FMP + EDPC = FEP + EDPC [11, Theorem 3.3]).
Let V be variety of algebras with EDPC. Then V has the FEP if and only if V has the FMP.

2.3. Residuated lattices. We review the basic classes of ordered and residuated
structures which we will encounter in this paper. For more details, the reader is
advised to consult the monographs [25, 36].

A (commutative) partially ordered monoid or pomonoid for short is an ordered al-
gebra ⟨A,≤, ·, 1⟩ such that ⟨A,≤⟩ is a poset, ⟨A, ·, 1⟩ is a (commutative) monoid,
and multiplication is order preserving in both arguments. A pomonoid is called
integral if 1 is its top (largest) element.

A (commutative) sℓ-monoid is an algebra ⟨A,∨, ·, 1⟩ such that ⟨A,∨⟩ is a join
semilattice, ⟨A, ·, 1⟩ is a (commutative) monoid, and the following equations hold:

x · (y ∨ z) = (x · y) ∨ (x · y), (x ∨ y) · z = (x · z) ∨ (y · z).

2In [11, Theorem 3.3] this result is proved for quasivarieties in a finite algebraic signature, but this
restriction is not necessary. The restriction is inherited from [11, Theorem 3.1], but that theorem in fact
holds for arbitrary signatures: given a universal sentence ϕ, if each of its finitely many “sub-quasi-
equations” ϕi for i ∈ I fails in a finite algebra Ai , then ϕ fails in the finite algebra ∏i∈I Ai .
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Each sℓ-monoid has a pomonoid reduct with x ≤ y ⇐⇒ x ∨ y = y.
A (commutative) residuated lattice is an algebra of the form ⟨A,∧,∨, ·, 1, \, /⟩ such

that ⟨A,∧,∨⟩ is a lattice ⟨A, ·, 1⟩ is a (commutative) monoid, and the binary division
operations \ and /, also called the residuals of multiplication, satisfy the following
residuation law, where ≤ denotes the order induced by the lattice ⟨A,∧,∨⟩:

x ≤ z/y ⇐⇒ x · y ≤ z ⇐⇒ y ≤ x\z.

The two residuals coincide (x\y = y/x) if and only if the residuated lattice is
commutative. Each residuated lattice has an sℓ-monoid reduct ⟨A,∨, ·, 1⟩.

The varieties of integral, of commutative, and of integral commutative residu-
ated lattices will be denoted by IRL, CRL, and ICRL, respectively.

A bounded residuated lattice is a residuated lattice equipped with constants ⊤ and
⊥ such that ⊤ is the top (largest) element and ⊥ is the bottom (smallest) element.
Equivalently, we may treat ⊤ as an abbreviation for ⊥\⊥ = ⊥/⊥. In an integral
bounded residuated lattice ⊤ = 1.

A residuated lattice is idempotent if it satisfies the equation x2 = x. More
generally, it is called n-potent for n ∈ N if it satisfies the equation xn+1 = xn.
Idempotent (bounded) integral residuated lattices are more commonly known as
Brouwerian algebras (Heyting algebras).

A residuated lattice is fully distributive if its lattice reduct is distributive and
moreover it satisfies the equations

x · (y ∧ z) = (x · y) ∧ (x · z), (x ∧ y) · z = (x · z) ∧ (y · z).

The variety of fully distributive IRLs (ICRLs) will be denoted by FdIRL (FdICRL).
A residuated lattice is semilinear if it is isomorphic to a subdirect product of

totally ordered residuated lattices. Semilinear residuated lattices form a variety
whose finitely subdirectly irreducible algebras are precisely the totally orderfed
residuated lattices. The subvariety of semilinear CRLs will be denoted by SemCRL.
Abelian ℓ-groups and Abelian ℓ-group cones are subvarieties of SemCRL, while
MV-algebras are a variety of bounded semilinear CRLs.

Lemma 2.5 ([40, Proposition 2.3]). A CRL A is finitely subdirectly irreducible if and
only if 1 is join irreducible in A: x ∨ y = 1 in A implies that either x = 1 or y = 1.

Theorem 2.6 (EDPC in varieties of CRLs [25, Theorem 3.55]).
A variety V ⊆ CRL has EDPC if and only if there is some n ∈ N such that V satisfies the
equation (1 ∧ x)n+1 = (1 ∧ x)n.

2.4. Conuclear residuated lattices. A conucleus on a residuated lattice A is an
interior operator 2 on A whose image is a submonoid of A, or equivalently an
interior operator 2 which satisfies 2x · 2y ≤ 2(x · y) and 2(1) = 1. A conuclear
residuated lattice is an expansion ⟨A,2⟩ of a residuated lattice A by a conucleus 2.
More precisely, we call ⟨A,2⟩ a conuclear expansion of A. Given a class K of resid-
uated lattices, a conuclear K-algebras is a conuclear expansion of a K-algebra, i.e. a
conuclear residuated lattice of the form ⟨A,2⟩ for A ∈ K.

The image of 2, or equivalently the set of all fixpoints a = 2(a) of 2, carries the
structure of a residuated lattice A2. This is a sub-sℓ-monoid of A but its meet ∧2
and its division operations \2 and /2 need not coincide with those of A:

x ∧2 y := 2(x ∧ y), x\2y := 2(x\y), x/2y := 2(x/y).

Residuated lattices of the form A2 are called the conuclear images of A.
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Given a class K of residuated lattices, C(K) denotes the class of all conuclear
images of K-algebras and Cx(K) denotes the class of all conuclear expansions of K-
algebras. Because the identity map is a conucleus, K ⊆ C(K) and each residuated
lattice is the reduct of some conuclear residuated lattice.

The map x 7→ 1 ∧ x is a conucleus on every residuated lattice A. Its conuclear
image is called the negative cone of A and denoted by A−. Given a class of residu-
ated lattices K, the class of negative cones of K-algebras will be denoted by K−. A
conucleus 2 on A will be called negative if 2x ≤ 1∧ x, or equivalently if A2 ⊆ A−.
Given a class K of residuated lattices, the class of all expansions of algebras in K
by a negative conucleus will be denoted by Cx−(K).

Clearly if K is a universal class or a (quasi)variety of residuated lattices, then so
is Cx(K) and Cx−(K), since these classes are axiomatized by adding the equational
definition of a (negative) conucleus to an axiomatization of K.

As a general pattern, we shall derive results about C(K) from results about
Cx(K). To this end, it will be useful to make explicit the relevant translation.

Lemma 2.7 (Conuclear translation).
Given a conuclear residuated lattice ⟨A,2⟩, there is a translation τcn from terms in the
signature of (bounded) residuated lattices to terms in the signature of (bounded) conuclear
residuated lattices such that for each universal sentence ϕ

A2 ⊨ ϕ ⇐⇒ ⟨A,2⟩ ⊨ τcn(ϕ),

namely τcn commutes with equality and with logical connectives and

τcn(1) := 1, τcn(⊥) := ⊥, τcn(⊤) := 2⊤,

τcn(x) := 2x for each variable x,

τcn(t ◦ y) := τcn(t) ◦ τcn(u) for ◦ ∈ {∨, ·},

τcn(t ◦ y) := 2(τcn(t) ◦ τcn(u)) for ◦ ∈ {∧, \, /}.

Proof. This is straightforward given the definition of A2. □

Lemma 2.8 (FEP for C(K)).
Let K be a class of residuated lattices. If Cx(K) has the FEP, then so does C(K).

Proof. This is an immediate consequence of Lemma 2.7. □

Lemma 2.9. A conuclear CRL ⟨A,2⟩ is finitely subdirectly irreducible if and only if
2x∨2y = 1 for x, y ≤ 1 in ⟨A,2⟩ implies that either 2x = 1 or 2y = 1, or equivalently
if and only if 1 is join irreducible in A2.

Proof. The proof is a straightforward modification of the proof of Lemma 2.5, so we
merely sketch it. The lattice of congruences of each conuclear CRL is isomorphic
to the lattice of its multiplicative 2-filters: multiplicative filters closed under 2.
Let FgA

∗ a denote the principal multiplicative filter generated by a ∈ A and let
FgA

2 a denote the principal multiplicative 2-filter generated by a. It is known that
FgA

∗ a = FgA
∗ (1 ∧ a) for all a ∈ A and FgA

∗ a ∩ FgA
∗ b = FgA

∗ (a ∨ b) for a, b ≤ 1
in A. Moreover, FgA

2 = FgA
∗ 2(1 ∧ a). Thus FgA

2 1 = FgA
2 a ∩ FgA

2 b if and only if
1 = 2(1 ∧ a) ∨2(1 ∧ b). Consequently, A is finitely subdirectly irreducible if and
only if 2(1 ∧ a) ∨ 2(1 ∧ b) = 1 implies 2(1 ∧ a) = 1 or 2(1 ∧ b) = 1, in other
words if and only if 2a ∨2b = 1 implies 2a = 1 or 2b = 1. □
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Theorem 2.10 (EDPC in varieties of conuclear CRLs [45]).
A variety V ⊆ Cx(CRL) has EDPC if and only if there is some n ∈ N such that V satisfies
the equation (2(1 ∧ x))n+1 = (2(1 ∧ x))n.

2.5. Words and multisets. A word over a set X is a finite sequence of elements
of X, written as [x1, . . . , xn]. Words over X form a pomonoid Word X with con-
catenation of words as the monoidal operation, the empty word [] as the monoidal
unit, and the subword relation as the partial order: u ⊑ v if and only if u may be
obtained by removing some (not necessarily contiguous) letters from v.

A multiset over a set X is a function f : X → N with finite support, i.e. with only
finitely many x ∈ X such that f (x) ̸= 0. Multisets over X form a commutative
pomonoid Multi X with componentwise addition ⊕ as the monoidal operation,
the empty multiset [] as the monoidal unit, and the submultiset relation as the
partial order: f ⊑ g if and only if f (x) ≤ g(x) for all x ∈ X.

We define the notation [x1, . . . , xn, y] inductively, with [] being the base case:
[x1, . . . , xn, y](y) := [x1, . . . , xn](y) + 1 and [x1, . . . , xn, y](z) := [x1, . . . , xn](z) for
each z ̸= y. Given n ∈ N, we use the notation nw := w ⊕ · · · ⊕ w (n times).

Each map of sets f : X → Y induces a map Multi f : Multi X → Multi Y, which
is an order preserving homomorphism:

(Multi f )([x1, . . . , xn]) := [ f (x1), . . . , f (xn)].

In practice, we shall write simply f ([x1, . . . , xn]) instead of (Multi f )([x1, . . . , xn]).
If X is a subset of an integral commutative pomonoid M, then we define the

map −M : Multi X → M as

[x1, . . . , xn]
M := x1 ·M . . . ·M xn.

This map is well-defined because M is commutative, and it is order inverting
because M is integral. That is,

u ⊑ v in Multi X =⇒ vM ≤M uM.

2.6. Higman’s Lemma. A key technical tool repeatedly employed in this paper
will be Higman’s Lemma [28]. For the sake of simplicity, we only state it for
algebras in a finite signature.3

A poset P satisfies ascending chain condition if it has no infinite ascending chains,
i.e. there is no infinite sequence x0 < x1 < . . . with x0, x1, . . . ∈ X. It is dually well
partially ordered if each downset of P is finitely generated, or equivalently if P has
no infinite antichains and P satisfies the ascending chain condition.

Lemma 2.11 (Higman’s Lemma [28]).
Let A be an algebra in a finite algebraic signature and let ≤ be a partial order on A such
that for each function symbol f of arity n:

(i) if a1 ≤ b1, . . . , an ≤ bn, then f (a1, . . . , an) ≤ f (b1, . . . , bn),
(ii) f (a1, . . . , an) ≤ ai for each i ∈ {1, . . . , n}.

3While Higman’s original result was stated in terms well partially ordered sets, in this paper it will
be convenient to state its order dual version. Higman’s original lemma was also formulated in terms
of 0-generated algebras, i.e. algebras generated by their primitive constants. However, in practice it
is more convenient to talk about, for example, monoids generated by a (dually) well partially ordered
set rather than about 0-generated algebras in a signature which expands the signature of monoids by
some set of constants.
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If A is generated by a set X ⊆ A which is dually well partially ordered by ≤, then A itself
is dually well partially ordered by ≤.

In the case of monoids, Higman’s Lemma is precisely the claim that each inte-
gral pomonoid generated by a dually well partially ordered subset is itself dually
well partially ordered (compare [23, Lemma 4.2]). In particular, each finitely gen-
erated integral pomonoid is dually well partially ordered.

Finitely generated integral sℓ-monoids will play an important role in this paper.
These are covered by the following lemma, since each sℓ-monoid generated by a
subset X is generated as a join semilattice by the submonoid generated by X.

Lemma 2.12 ([23, Lemma 4.3]).
Let A be a join semilattice generated by a dually well partially ordered subset. Then A
satisfies the ascending chain condition. In particular, each finitely generated integral sℓ-
monoid satisfies the ascending chain condition.

3. CONUCLEAR EXPANSIONS AND π-EMBEDDINGS

Our first step will be to gain a better understanding of the class operator UCxS.
Rather like A ∈ U(K) holds if each finite partial subalgebra has an embedding
into K (Theorem 2.2), we show that CxS(A) ⊆ UCxS(K) holds if each finite
partial subalgebra has a well-behaved embedding into K ⊆ IRL (Lemma 3.7),
namely what we call a π-embedding. We then use this to show (Theorem 3.9) that
CxU(K) = UCx(K), provided that K ⊆ IRL is closed under subalgebras and U(K)
has locally finite monoid reducts. Consequently (Theorem 3.10), if a universal class
K with locally finite monoid reducts has the FEP, then so do Cx(K) and C(K). This
for example implies that the variety of conuclear n-potent integral commutative
residuated lattices has the FEP (Corollary 3.11). A similar result (Theorem 3.6)
for monadic integral residuated lattices (defined below) states that if K ⊆ IRL is
a locally finite universal class, then the universal class of all monadic expansions
of algebras in K has the FEP. This for example implies that the variety of monadic
Gödel algebras has the FEP (which was already proved in [14]).

Let us repeat here the remark from the introduction that the results proved here
apply equally well to bounded integral residuated lattices, with virtually identical
proofs. Indeed, the bounded case is very slightly simpler, since we can do away
with the discussion of coinitiality (each bounded sub-sℓ-monoid is a coinitial sub-
set). We omit explicit discussion of the bounded case altogether, relying on the
interested reader to observe that at no point would the presence of the bottom
constant incur any additional complications.

We start by observing (Lemma 3.2) that within the set CxS(A) we may restrict to
finite partial subalgebras of a particular kind. Given an integral residuated lattice
A and a finite set S ⊆ A, let

⟨S⟩A := sub-sℓ-monoid of A generated by S.

That is, ⟨S⟩A consists of non-empty finite joins of finite products of elements of S.
We show that ⟨S⟩A is (the sℓ-monoid reduct of) a residuated lattice in CS(A).

To prevent a potential misreading, we emphasize that when we talk about a
coinitial set S ⊆ X with X ⊆ A in the following, we always mean a set S which is
coinitial as a subset of X (rather than a conitial subset of A).
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Lemma 3.1 (The conuclear IRL ⟨SgA X,2S⟩).
Consider A ∈ IRL, a set X ⊆ A, and a finite coinitial S ⊆ X. Then ⟨S⟩A is the image of
a conucleus 2S on SgA X.

Proof. We first show that ⟨S⟩A is coinitial in SgA X. Each a ∈ SgA X has the form
a = tA(x1, . . . , xn) for some residuated lattice term t and x1, . . . , xn ∈ X. Induction
over the complexity of t shows that some element of ⟨S⟩A lies below a. The base
case is precisely the assumption that S is coinitial in X. The case of the constant
1 is trivial. Finally, in the inductive step for ◦ ∈ {∧,∨, ·, \, /} we merely observe
that if a1 ≤ tA

1 (x1, . . . , xn) and a2 ≤ tA
2 (x1, . . . , xn) for some a1, a2 ∈ ⟨S⟩A, then

a1 · a2 ≤ tA
1 (x1, . . . , xn) ◦A tA

2 (x1, . . . , xn). Notice that the cases ◦ ∈ {∧, \, /} rely
on the integrality of A.

Because ⟨S⟩A satisfies the ascending chain condition by Lemma 2.12, each el-
ement of ↓ a ∩ ⟨S⟩A for a ∈ SgA X lies below a maximal element of ↓ a ∩ ⟨S⟩A.
Moreover, ↓ a ∩ ⟨S⟩A is non-empty because ⟨S⟩A is coinitial in SgA X, and it is
upward directed because ⟨S⟩A is a sub-sℓ-monoid of SgA X. Thus ↓ a ∩ ⟨S⟩A has
exactly one maximal element. That is, ⟨S⟩A is the image of an interior operator
on SgA X, which will be denoted by 2S. Because ⟨S⟩A is a submonoid of SgA X,
the interior operator 2S is a conucleus. □

The domain of the conucleus 2S depends on X, so strictly speaking one ought
to write 2X

S . We choose to suppress the superscript and simply write 2S. This is
harmless because the conuclei 2X

S agree with each other in the sense that if S is a
coinitial subset of both X1 and X2, then 2X1

S (a) = 2X2
S (a) for a ∈ SgA X1 ∩ SgA X2.

Lemma 3.2 (Finite partial subalgebras of conuclear IRLs).
Consider a conucleus 2 on A ∈ IRL. Then each finite partial subalgebra of ⟨A,2⟩ is a
restriction of ⟨SgA X,2S⟩|X for some finite X ⊆ A and coinitial S ⊆ X.

Proof. Consider a finite partial subalgebra ⟨A,2⟩|Y of ⟨A,2⟩. Take X := Y ∪2[Y]
and S := X ∩A2. Clearly A|Y is a restriction of SgA X|X and S is coinitial in X. The
map 2S is thus a well-defined conucleus on SgA X by Lemma 3.1. To show that
⟨A,2⟩|Y is a restriction ⟨SgA X,2S⟩|X , it will suffice to prove that 2S(a) = 2(a) for
each a ∈ Y. Because A2 is a sub-sℓ-monoid of A and S ⊆ A2, we have ⟨S⟩A ⊆ A2,
so 2S(a) ≤ 2(a). Conversely, 2(a) ≤ a and 2(a) ∈ S, so 2(a) = 2S(2(a)) ≤
2S(a). □

In particular, a universal sentence ϕ fails in ⟨A,2⟩ if and only if it fails in some
partial algebra ⟨SgA X,2S⟩|X for some finite X ⊆ A and coinitial S ⊆ X, in the
sense that there is a valuation of variables v in X with respect to which each
subterm of ϕ is well-defined in ⟨SgA X,2S⟩|X and ϕ comes out false.

Theorem 3.3 (FEP for conuclear locally finite K-algebras).
Let K ⊆ IRL be a locally finite universal class. Then Cx(K) and C(K) have the FEP.

Proof. The claim for Cx(K) is an immediate consequence of Lemma 3.2. The claim
for C(K) then follows from Lemma 2.8. □

The above theorem covers, among other examples, the varieties of conuclear
Boolean algebras (i.e. S4 modal algebras), conuclear Gödel algebras, and conuclear
n-valued MV-algebras. On the other hand, it does not cover the case of the variety
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of conuclear bounded ICRLs, which was shown to have the FEP by Amano [2] (see
also [44, Theorem 13]) using the methodology of Blok and van Alten [11].

An analogous theorem holds for the class mK introduced in [18], which arises
in the study of one-variable fragments of first-order substructural logics. Algebras
in the class mK will be called weakly monadic K-algebras here. While in some cases
(such as for Heyting algebras) these coincide with monadic K-algebras as normally
understood, in other cases they form a strictly larger class. For example, monadic
Gödel algebras are precisely the weakly monadic Gödel algebras which satisfy the
constant domain axiom ∀(∀x ∨ y) = ∀x ∨ ∀y (cf. [18, Example 2.3]).

More precisely, by a weakly monadic pair on a residuated lattice A we mean
a conucleus ∀ and a closure operator ∃ such that A∀ is a subalgebra of A and
moreover ∀ and ∃ have the same image: ∃[A] = ∀[A]. This last condition is
equivalent to ∀ and ∃ being adjoint:

a ≤ ∀b ⇐⇒ ∃a ≤ b for all a, b ∈ A.

A monadic residuated lattice is then a residuated lattice equipped with a weakly
monadic pair. The class of weakly monadic residuated lattices forms a variety.

Lemma 3.4 (The weakly monadic IRL ⟨SgA X, ∀S, ∃S⟩).
Consider a locally finite A ∈ IRL, a set X ⊆ A, and a finite coinitial S ⊆ X. Then SgA S
is the image of a weakly monadic pair ∀S and ∃S on SgA X.

Proof. SgA S is coinitial in SgA X because ⟨S⟩A ⊆ SgA S and ⟨S⟩A is coinitial in
SgA X by Lemma 3.1. The set SgA S is finite because A is locally finite. Because
SgA S is finite and closed under finite meets, it is the image of a closure operator
∃S on SgA X. Because SgA S is finite, coinitial, and closed under binary joins, it is
the image of an interior operator ∀S on SgA X. Moreover, ∀S is a conucleus since
SgA S is a submonoid of SgA X. Because ∀S and ∃S have the same image and this
image is a subalgebra of SgA X, they form a weakly monadic pair. □

Lemma 3.5 (Finite partial subalgebras of locally finite weakly monadic IRLs).
Consider a weakly monadic pair ∀ and ∃ on a locally finite A ∈ IRL. Then each finite
partial subalgebra of ⟨A, ∀, ∃⟩ is a restriction of the finite algebra ⟨SgA X, ∀S, ∃S⟩ for
some finite X ⊆ A and coinitial S ⊆ X.

Proof. Consider a finite partial subalgebra ⟨A, ∀, ∃⟩|Y of ⟨A, ∀, ∃⟩. Take X := Y ∪
∀[Y] ∪ ∃[Y] and S := X ∩ ∀[A] = X ∩ ∃[A]. Clearly A|Y is a restriction of SgA X|X
and S is coinitial in X. Then SgA S is the image of a weakly monadic pair ∀S and ∃S
on SgA X by Lemma 3.4. To show that ⟨A, ∀, ∃⟩|Y is a restriction ⟨SgA X, ∀S, ∃S⟩|X ,
it will suffice to prove that ∀S(a) = ∀(a) and ∃S(a) = ∃(a) for each a ∈ X. Because
∀[A] = ∃[A] is a subalgebra of A and S ⊆ ∀[A] = ∃[A], we have SgA S ⊆ ∀[A] =
∃[A], so ∀S(a) ≤ ∀(a) and ∃(a) ≤ ∃S(a). Conversely, ∀(a) ≤ a and ∀(a) ∈ S, so
∀(a) = ∀S(∀(a)) ≤ ∀S(a). Similarly, a ≤ ∃(a) and ∃(a) ∈ S, so ∃(a) = ∃S(∃(a)) ≥
∃S(a). □

Theorem 3.6 (FEP for weakly monadic locally finite K-algebras).
Let K ⊆ IRL be a locally finite universal class. Then weakly monadic K-algebras have
the FEP.

Proof. This is an immediate consequence of Lemma 3.5. □
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The above theorem generalizes the corresponding result for varieties of Heyting
algebras proved by Bezhanishvili [7, Theorem 44].4 For example, weakly monadic
Gödel algebras have the FEP, since Gödel algebras are locally finite.5

We now relax the requirement that K-algebras be locally finite. Instead, we shall
require that they have locally finite monoid reducts, or equivalently that they have
locally finite sℓ-monoid reducts. We show that if such a universal class K ⊆ IRL
has the FEP, then Cx(K) and C(K) inherit this property.

Consider an integral residuated lattice A and a finite set X ⊆ A. An embedding
ι : A|X ↪→ B into an integral residuated lattice B will be called a π-embedding if for
all words w ∈ Word X and all a ∈ X

wA ≤A a =⇒ ι(w)B ≤B ι(a).

Recall that we use the notation wA := x1 · . . . · xn for w := [x1, . . . , xn]. More
explicitly, the above condition states that for all x1, . . . , xn ∈ X and all a ∈ X

x1 ·A . . . ·A xn ≤A a ⇐⇒ ι(x1) · . . . · ι(xn) ≤B ι(a).

Lemma 3.7 (UCxS and π-embeddings).
Suppose that each finite partial subalgebra A ∈ IRL has a π-embedding into a class K ⊆
IRL. Then CxS(A) ⊆ UCxS(K).

Proof. By Theorem 2.2 we need to prove that each finite partial subalgebra of each
algebra in CxS(A) embeds into CxS(K). By Lemma 3.2 each such finite partial
subalgebra is a restriction of ⟨SgA X,2S⟩|X for some finite X ⊆ A and coinitial
S ⊆ X. It therefore suffices to embed each ⟨SgA X,2S⟩|X into CxS(K).

By assumption there is a π-embedding ι of A|X into some B ∈ K, which is
therefore a π-embedding of (SgA X)|X into B. It suffices to show that ι is an
embedding of the partial algebra ⟨SgA X,2S⟩|X into ⟨SgB ι[X],2ι[S]⟩ ∈ CxS(K).

Suppose therefore that 2S(a) = b for a, b ∈ X. We show that 2ι[S](ι(a)) = ι(b).
The equality 2S(a) = b implies that b ≤A a and b ∈ S, so ι(b) ≤B ι(a) and
ι(b) ∈ ι[S]. It remains to show that y ≤B ι(a) implies y ≤B ι(b) for each y ∈ ⟨ι[S]⟩B.
Equivalently, it remains to show that ι(w)B ≤B ι(a) implies ι(w)B ≤B ι(b) for all
w ∈ Word S. But this holds because ι is a π-embedding: ι(w)B ≤B ι(a) implies
that wA ≤A b, which implies that wA ≤A b because 2S(a) = b and w ∈ Word S, so
ι(w)B ≤B ι(b). □

Remark 3.8. It is not difficult to formulate a necessary and sufficient condition for
CxS(A) ⊆ UCxS(K) in the same spirit, namely that for all a ≤A b in X with
a ∈ S if wA ≤A b implies wA ≤A a for all w ∈ Word S, then ι(w)B ≤B ι(b)
implies ι(w)B ≤B ι(a) for all w ∈ Word S. Inspecting the proof of Lemma 3.7
shows that it was in fact this condition which we used to establish the inclusion
CxS(A) ⊆ UCxS(K). We omit the straightforward proof that this condition is also
necessary, since we have no further use for this necessary and sufficient condition.

4Theorem 44 of [7] talks about the Finite Model Property rather than the Finite Embeddability
Property, but these properties are equivalent for varieties of monadic Heyting algebras by Theorem 2.4,
since monadic Heyting algebras have EDPC by the correspondence between congruences and monadic
filters established in [7].

5A variety V in a finite signature is locally finite if and only if for each n ∈ N there is a finite bound
on the cardinality of n-generated subdirectly irreducible algebras in V [8]. But subdirectly irreducible
Gödel algebras are chains and n-generated Gödel chains have cardinality at most n + 2.
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Theorem 3.9 (UCx = CxU in the case of locally finite monoid reducts).
Consider a class K ⊆ IRL which is closed under subalgebras. If U(K) has locally finite
monoid reducts, then

CxU(K) = UCx(K).

Proof. The class CxU(K) is a universal class, since it is axiomatized by adding the
inequalities defining a conucleus to any axiomatization of U(K). Thus UCx(K) ⊆
UCxU(K) = CxU(K). Conversely, we need to prove that CxU(K) ⊆ UCx(K).
Since U(K) = SU(K), by Lemma 3.7 it suffices to show that for each finite partial
subalgebra A|X of each A ∈ U(K) has a π-embedding into some B ∈ K. Because
A has a locally finite monoid reduct, ⟨X⟩A is finite. Taking Y := ⟨X⟩A, there is
an embedding ι of A|Y into B ∈ K by Theorem 2.2. This embedding restricts to a
π-embedding of A|X into B because wA ∈ Y for each w ∈ Word X. □

Theorem 3.10 (FEP for conuclear IRLs with locally finite monoid reducts).
Consider a universal class K ⊆ IRL with locally finite monoid reducts. If K has the FEP,
then so do Cx(K) and C(K).

Proof. Applying Theorem 3.9 to the class of finite algebras in K yields the claim for
Cx(K). The claim for C(K) then follows by Lemma 2.8. □

Each universal class of IRLs with locally finite monoid reducts is n-potent for
some n ∈ N (it satisfies xn+1 = xn). Conversely, each n-potent commutative
monoid is locally finite. More generally, each n-potent monoid which satisfies one
of the generalized commutativity equations of [15] is locally finite [1].

Corollary 3.11 (FEP for n-potent conuclear ICRLs).
The variety of conuclear n-potent ICRLs has the FEP for each n ∈ N.

Proof. The variety of n-potent ICRLs is known to have the FEP [11, Theorem 4.2].
The result now follows from Theorem 3.10. □

The case n := 1 for bounded ICRLs states that conuclear Heyting algebras have
the FEP, which was recently proved by de Groot and Shillito [21, Corollary 4.11].6

It remains to consider how the conucleus 2S is actually computed. In the
remainder of this section, it will be convenient to treat 2Sa as a partial operation
on A, which is defined if and only if ⟨S⟩A ∩ ↓ a is non-empty.

Lemma 3.12. Consider A ∈ ICRL with no infinite ascending chains and with computable
primitive operations. Each decision procedure for the condition ωa ≤ b for a, b ∈ A yields
a computation procedure for the partial map ⟨S, a⟩ 7→ 2Sa, where S := {s1, . . . , sn} ⊆ A.

Proof. The value 2Sa is well-defined if and only if ⟨S⟩A ∩ ↓ a is non-empty, which
in turn holds if and only if the decidable condition ωs ≤ a holds, where s is some
product containing each element of S at least once.

If 2Sa exists, then it is the join of all products in the monoid generated by
S which lie below a. For each s ∈ S we may divide these products into those

6More precisely, they proved that the logic of conuclear Heyting algebras enjoys the FMP with
respect to a certain relational semantics. But their relational frames give rise to conuclear Heyting
algebras and the class of conuclear Heyting algebras is the equivalent algebraic semantics of the logic
of conuclear Heyting algebras, so their result implies the algebraic FMP for the variety of conuclear
Heyting algebras. The FEP then follows from Theorem 2.4 because conuclear Heyting algebras have
EDPC by Theorem 2.10.
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products s · p which contain s as a factor and those products which do not. Then
s · p ≤ a if and only if p ≤ s\a, so the join of all the products of the form s · p is in
fact s ·2S(s\a). This yields the following recursive procedure for computing 2Sa:

2Sa =

{
s ·2S(s\a) ∨2S−{s}a if 2S−{s}a exists,
s ·2S(s\a) otherwise.

If the left-hand side exists, then so does the right-hand side. Because a ≤ s\a and A
has no infinite ascending chains and S is finite, we may iterate this reduction until
we obtain a join where the well-defined operation 2Tx occurs only in contexts
where either T = ∅ or t\x = x for each t ∈ T. In both cases x = 1 and 2Tx = 1: in
the former case this is trivial, and in the latter case t1 · . . . · ti ≤ x for t1, . . . , ti ∈ T
implies that 1 ≤ ti\(. . . (t1\x)) = x. This terminates the computation of 2Sa. □

The above lemma provides a simple recursive procedure for computing 2S.
However, it also has two limitations. Firstly, while it applies to the algebras (Z−)k

and therefore suffices for the purposes of studying conuclei on Abelian ℓ-group
cones (Section 5), it does not apply to Lex(n, Z) and therefore it does not suffice
for the purposes of studying ∨-conuclei on Abelian ℓ-group cones (Section 8).
Secondly, we do not see a simple way to adapt it to handle the meet preserving
conucleus 2∧

S (Section 7). Accordingly, we also provide a more general, brute
force procedure for computing 2S, which avoids these limitations.

Lemma 3.13. Consider A ∈ IRL with computable primitive operations. Each pair of
decision procedures for the conditions ⟨s1, . . . , sn⟩A ∩ ↓ a = ∅ for a, s1, . . . , sn ∈ A and
⟨s1, . . . , sn⟩A ∩ (↓ a − ↓ b) = ∅ for b ≤ a in A and s1, . . . , sn ∈ A yields a computation
procedure for the partial map ⟨S, a⟩ 7→ 2Sa, where S := {s1, . . . , sn} ⊆ A.

Proof. If ⟨s1, . . . , sn⟩A ∩ ↓ a = ∅, then 2Sa is undefined. Otherwise, take i := 0
and enumerate elements of ⟨S⟩A until some b0 ∈ ⟨S⟩A with b0 ≤ a is reached.
Then repeat the following while ⟨S⟩A intersects ↓ a − ↓ bi: enumerate elements
of the submonoid of A generated by S until finding some c ∈ ↓ a − ↓ bi. Then
take bi+1 := bi ∨ c and increment i. Clearly bi+1 ∈ ⟨S⟩A. Because ⟨S⟩A satisfies
the ascending chain condition by Lemma 2.12, this process eventually terminates:
otherwise b0 < b1 < . . . would be an infinite ascending chain. The final bi is then
the value of 2Sa, since bi ∈ ⟨S⟩A and ⟨S⟩A does not intersect ↓ a − ↓ bi, i.e. each
element of ⟨S⟩A below a in fact lies below bi. □

4. CONUCLEAR EXPANSIONS AND ω-EMBEDDINGS

While the sufficient condition for the inclusion CxS(A) ⊆ UCxS(K) given in
Lemma 3.7 was useful in the locally finite case, we will need to do some further
work before we can apply it to the case of conuclear Abelian ℓ-group cones.

We show that the π-embeddings introduced in the previous section may be
replaced by what we call ω-embeddings (Lemma 4.3), or equivalently by what
we call weak ω-embeddings (Lemma 4.4). Given a variety V ⊆ ICRL, we then
reduce the problem of finding an ω-embedding of each finite partial subalgebra of
each A ∈ V into some class of integral commutative residuated lattices to the case
where A is finitely subdirectly irreducible (Theorem 4.11).

The reduction from π-embeddings to ω-embeddings will rely on Higman’s
Lemma for multisets, which is a particular instance of Lemma 2.11.
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Lemma 4.1 (Higman’s Lemma for multisets).
Let X be a finite set. Then each upset of Multi X is finitely generated.

In contrast, downsets of Multi X need not be finitely generated. In fact, the
finitely generated downsets of Multi X are precisely the finite downsets of Multi X.
However, we show that downsets of Multi X are still finite unions of downsets of
a special form. A downset D of Multi X will be called quasi-principal if there are
u, v ∈ Multi X such that for each w ∈ Multi X

w ∈ D ⇐⇒ w ⊑ u ⊕ mv for some m ∈ N.

It will be called quasi-finitely generated if it is a finite (possibly empty) union of
quasi-principal downsets, or more explicitly if there are u1, v1, . . . , uk, vk ∈ Multi X
(possibly k = 0) such that

w ∈ D ⇐⇒ w ⊑ u1 ⊕ mv1 or . . . or w ⊑ uk ⊕ mvk for some m ∈ N.

Each principal (finitely generated) set is quasi-principal (quasi-finitely generated).

Lemma 4.2 (Downsets of Multi X).
Let X be a finite set. Then each downset of Multi X is quasi-finitely generated.

Proof. Consider a downset D of Multi X. If D = Multi X, the claim holds for
k := 1 if we take u1 := [] and we take v1 to be the multiset containing exactly one
occurrence of each element of X. We may therefore assume that D ⊊ Multi X.

Consider the non-empty upset U := Multi X − D of Multi X. By Higman’s
Lemma (Lemma 4.1) there is l ≥ 1 and there are w1, . . . , wl ∈ Multi X such that
w ∈ U if and only if wi ⊑ w for some i ∈ {1, . . . , l}. Each of the conditions wi ⊑ w
is equivalent to the finite conjunction of inequalities wi(x) ≤ w(x) for x ∈ X, so
the condition w ∈ U is equivalent to a non-empty finite disjunction of non-empty
finite conjunctions of conditions of the form p ≤ w(x) for x ∈ X and p ∈ N.

Negating this finite disjunction and transforming the negation into disjunctive
normal form yields that the condition w /∈ U is equivalent to a non-empty finite
disjunction of non-empty finite conjunctions of conditions of the form w(x) < p
for x ∈ X and p > 1, or equivalently to a non-empty finite disjunction of non-
empty finite conjunctions of inequalities of the form w(x) ≤ p for x ∈ X and
p ∈ N. We may further assume, removing redundant conditions if necessary, that
in each such conjunction each x ∈ X occurs in at most one inequality.

It now only remains to observe that each such finite conjunction of inequalities
w(xi) ≤ pi for x1, . . . , xn ∈ X and p1, . . . , pn ∈ N is equivalent to the condition
that w ⊑ u ⊕ mv for some m ∈ N, where u := p1[x1] ⊕ · · · ⊕ pn[xn], while v is
the multiset containing exactly one occurrence of each element of X −{x1, . . . , xn}
and nothing else. Consequently, there are u1, v1, . . . , uk, vk ∈ Multi X such that

w /∈ U ⇐⇒ w ⊑ u1 ⊕ mv1 or . . . or w ⊑ uk ⊕ mvk for some m ∈ N. □

Given A ∈ ICRL and a, b, c ∈ A, it will be convenient to use the notation

a · bω ≰A c ⇐⇒ a · bm ≰A c for all m ∈ N,

a · bω ≤A c ⇐⇒ a · bm ≤A c for some m ∈ N.

Consider A, B ∈ ICRL and a finite set X ⊆ A. An embedding ι : A|X ↪→ B will
be called an ω-embedding if

a · bω ≰A c =⇒ ι(a) · ι(b)ω ≰B ι(c) for all a, b, c ∈ A.
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It will be called a weak ω-embedding if

bω ≰A c =⇒ ι(b)ω ≰B ι(c) for all b, c ∈ A.

A well-defined composition of (weak) ω-embeddings is a (weak) ω-embedding.

Lemma 4.3 (From π-embeddings to ω-embeddings).
Each finite partial subalgebra of A ∈ ICRL has a π-embedding into K ⊆ ICRL if and only
if each finite partial subalgebra of A has an ω-embedding into K.

Proof. Left to right, each π-embedding is an ω-embedding.
Right to left, we extend each finite X ⊆ A to some finite Y ⊆ A such that each

ω-embedding of A|Y into an algebra B ∈ K restricts to a π-embedding of A|X
into B. To this end, it will suffice to find for each a ∈ X a finite extension Ya ⊆ A
of X such that for each w ∈ Multi X and each ω-embedding ι of A|Ya into B

(∗) wA ≤A a ⇐⇒ ι(w)B ≤B ι(a).

Taking Y :=
⋃

a∈X Ya then yields the desired extension of X.
Given a ∈ X, take

Ua := {w ∈ Multi X | wA ≤A a}.

Because A is integral, Ua is an upset of Multi X. Higman’s Lemma (Lemma 4.1)
applied to Ua now provides w1, . . . , wl ∈ Multi X such that for all w ∈ Multi X

w ∈ Ua ⇐⇒ w1 ⊑ w or . . . or wl ⊑ w.

On the other hand, Lemma 4.2 applied to the downset Multi X − Ua provides
u1, v1, . . . , uk, vk ∈ Multi X such that for all w ∈ Multi X

w /∈ Ua ⇐⇒ w ⊑ u1 ⊕ mv1 or . . . or w ⊑ uk ⊕ mvk for some m ∈ N.

In particular, wA
i ≤A a for each i ∈ {1, . . . , l}, while uA

i · (vA
i )

m ≰A a for each
i ∈ {1, . . . , k} and m ∈ N. We take

Ya := X ∪ {uA
1 , vA

1 , . . . , uA
k , vA

k , wA
1 , . . . , wA

l }.

We now prove the left-to-right implication in (∗). Suppose that wA ≤A a for
w ∈ Multi X. Then w ∈ Ua, so wi ⊑ w for some i ∈ {1, . . . , l}, hence ι(wi) ⊑ ι(w)
and by integrality ι(w)B ≤B ι(wi)

B. Because ι is an ω-embedding, the inequality
wA

i ≤A a implies that ι(wi)
B ≤B ι(a), so ι(w)B ≤B ι(wi)

B ≤B ι(a) as desired.
It remains to prove the right-to-left implication in (∗). Suppose that wA ≰A a.

Then w /∈ U, so w ⊑ ui ⊕ mvi for some i ∈ {1, . . . , k} and m ∈ N, hence
ι(w) ⊑ ι(ui)⊕ mι(vi) and ι(ui)

B · ι(vB
i )

m ≤B ι(w)B. Because ι is an ω-embedding,
the inequalities uA

i · (vA
i )

m ≰A a for all m ∈ N imply that ι(ui)
B · (ι(vi)

B)m ≰B ι(a)
for all m ∈ N. Consequently, the inequality ι(ui)

B · ι(vB
i )

m ≤B ι(w)B implies that
ι(w)B ≰B ι(a) as desired. □

We can replace ω-embeddings by weak ω-embeddings in the above lemma, as
we now show. Indeed, when dealing with the particular case of Abelian ℓ-group
cones in the next section, we shall exclusively work with weak ω-embeddings.
However, there are two reasons to work with ω-embeddings in this section. Firstly,
the reduction from ω-embeddings to weak ω-embeddings relies on the presence
of residuals, but we wish to write our proofs in such a way that the reader may
immediately apply them to structures where residuals need not exist, such as
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expansions of sℓ-monoids by a conucleus, should they wish to do so. Secondly, we
also wish to make the task of extending these proofs to meet-preserving conuclear
expansions in Section 7 as straightforward as possible.

Lemma 4.4. Consider A ∈ ICRL and K ⊆ ICRL. Each finite partial subalgebra of A has
an ω-embedding into K if and only if each finite partial subalgebra A|X of A has a weak
ω-embedding into K.

Proof. Left to right, apply the hypothesis to A|X∪{1} and take a := 1. Right to left,
consider a finite partial subalgebra A|X and take Y := X ∪ {a\b | a, b ∈ X}. By
assumption, A|Y has an embedding ι into some B ∈ K such that bω ≰A c implies
ι(b)ω ≰B ι(c) for b, c ∈ Y. We show that ι restricts to an ω-embedding of A|X
into B. For a, b, c ∈ X clearly a · bω ≰A c if and only if bω ≰A a\c and likewise
ι(a) · ι(b)ω ≰B ι(c) if and only if ι(b)ω ≰B ι(a)\ι(c) = ι(a\c), using the fact that
a\c ∈ Y. But by assumption bω ≰A a\c if and only if ι(b)ω ≰B ι(a\c). □

Theorem 4.5 (UCxS and ω-embeddings).
Suppose that each finite partial subalgebra of A ∈ ICRL has a (weak) ω-embedding into a
class K ⊆ ICRL. Then CxS(A) ⊆ UCxS(K).

Proof. This is an immediate consequence of Lemmas 3.7, 4.3, and 4.4. □

In the remainder of this section, we show that for the purposes of finding a
generating set of Cx(V) for a variety V ⊆ ICRL, it will suffice to consider ω-
embeddings of Vfsi-algebras.

Lemma 4.6. Let (Ai)i∈I be a finite family of integral commutative residuated lattices, let
A := ∏i∈I Ai, and let πi : A → Ai be the projection maps. Then

a · bω ≤A c ⇐⇒ πi(a) · πi(b)ω ≤Ai πi(c) for each i ∈ I.

Proof. If a · bn ≤A c, then clearly πi(a) ·πi(b)n ≤Ai πi(c) for each i ∈ I. Conversely,
suppose that for each i ∈ I there is some ni ∈ N such that πi(a) ·πi(b)ni ≤Ai πi(c).
Taking n := max{ni | i ∈ I}, which exists because I is finite, πi(a) · πi(b)n ≤Ai

πi(c) for each i ∈ I, so a · bn ≤A c. □

Lemma 4.7 ([13, Lemma IV.6.6]). Let F be a family of subsets of I such that
(i) I ∈ F ,

(ii) if J ⊆ K ⊆ I and J ∈ F , then K ∈ F ,
(iii) if J ∪ K ∈ F , then either J ∈ F or K ∈ F .

Then there is an ultrafilter U on I such that U ⊆ F .

Lemma 4.8 (Reduction to finite subdirect products).
CxISP(K) ⊆ UCxSPfinPU(K) for each class K ⊆ ICRL.

Proof. By Theorem 4.5 it suffices to show that each finite partial subalgebra A|X of
each product A := ∏i∈I Ai with Ai ∈ K has an ω-embedding ι into a finite product
B of algebras in IPU(K).

Given J ⊆ I, let πJ : ∏i∈I Ai → ∏j∈J Aj be the restriction map. Because X is
finite, there is a finite set J ⊆ I such that πJ is an embedding of A|X into ∏j∈J Aj.
We now find an algebra C ∈ PfinPU(K) and a homomorphism h : A → C such
that

a · (bA)ω ≰A c =⇒ h(ui)
C · (h(b)C)ω ≰C h(c) for all i ∈ {1, . . . , k}.
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The map ι × h : A|X ↪→ B for B := ∏j∈J Aj × C ∈ PfinIPU(K) will then satisfy the
requirements of the previous paragraph.

For each a ∈ X and each i ∈ {1, . . . , k} such that a · (bA)ω ≰A c we shall
define an algebra Ca,b,c ∈ PU(K) and a homomorphism ha,b,c : A → Ca,b,c such that
ha,b,c(c) · ha,b,c(bA)ω ≰Ca,b,c ha,b,c(c). We take C to be the product of the algebras
Ca,b,c and h : A → C to be the product of the homomorphisms ha,b,c. Then C and h
will satisfy the requirements of the previous paragraph.

Let Fa,b,c be the family of all J ⊆ I such that πJ(c) · πJ(bA)ω ≰πJ [A] πJ(c).
We define Ca,b,c to be an ultrapower ∏i∈I Ai/Ua,b,c with respect to an ultrafilter
Ua,b,c ⊆ Fa,b,c, with ha,b,c : A → Ca,b,c being the quotient map.

We use Lemma 4.7 to show that such an ultrafilter exists. Because a · (bA)ω ≰A

c, we have I ∈ Fa,b,c. Clearly if J ∈ Fa,b,c and J ⊆ K ⊆ I, then K ∈ Fa,b,c.
Finally, if J ∪ K ∈ Fa,b,c, then either J ∈ Fa,b,c or K ∈ Fa,b,c: contrapositively,
if J, K /∈ Fa,b,c, then there are m, n ∈ N such that πJ(c) · πJ(bA)m ≤πJ [A] πJ(c)
and πK(c) · πK(bA)n ≤πK [A] πK(c), so πJ∪K(c) · πJ∪K(bA)p ≤πJ∪K [A] πJ∪K(c) for
p := max(m, n), hence J ∪ K /∈ Fa,b,c.

It remains to show that ha,b,c(c) · ha,b,c(bA)ω ≰Ca,b,c ha,b,c(c). Suppose otherwise.
Then there is be some n ∈ N such that ha,b,c(c) · ha,b,c(bA)n ≤Ca,b,c ha,b,c(c), and
therefore some J ∈ Ua,b,c such that πJ(c) ·πJ(bA)n ≤πJ [A] πJ(c). But then J /∈ Fa,b,c,
contradicting the inclusion Ua,b,c ⊆ Fa,b,c. □

Theorem 4.9 (Generating class for conuclear V-algebras).
Consider a variety V ⊆ ICRL. The variety of conuclear V-algebras is generated as a
universal class by the conuclear expansions of ISPfin(Vfsi):

Cx(V) = UCxSPfin(Vfsi).

Proof. Each variety V satisfies V = ISP(Vfsi). Moreover, for V ⊆ ICRL we have
PU(Vfsi) = PU(V ∩ ICRLfsi) ⊆ PU(V) ∩ PU(ICRLfsi) ⊆ V ∩ ICRLfsi = Vfsi: the in-
clusion PU(ICRLfsi) ⊆ ICRLfsi holds because being finitely subdirectly irreducible
is definable by a first-order condition in integral commutative residuated lattices
(Lemma 2.5). Applying Lemma 4.8 to Vfsi thus proves the claim. □

Theorem 4.9 applies to any variety V of integral commutative residuated lat-
tices. If we have further understanding of the finitely subdirectly irreducible alge-
bras in V, we now show that we may in fact restrict to a subclass of Vfsi. This is
indeed what we shall do in the next section in the case of Abelian ℓ-group cones.

Lemma 4.10. Suppose that each finite partial subalgebra of each A ∈ K ⊆ ICRL has an
ω-embedding into L ⊆ ICRL. Then CxSPfin(K) ⊆ UCxSPfin(L).

Proof. By Theorem 4.5 it suffices to show that for each finite product A := ∏i∈I Ai
of algebras Ai ∈ K with i ∈ I and each finite X ⊆ A there is an ω-embedding ι of
A|X into some B ∈ SPfin(L). Because I is finite, we may without loss of generality
take X := ∏i∈I Xi for some family of finite sets Xi ⊆ Ai with i ∈ I. By assumption,
each Ai|Xi has an ω-embedding ιi into L. Their product ι is then an embedding of
A|X into SPfin(L). Moreover, ι is an ω-embedding by Lemma 4.6. □

Theorem 4.11 (Generating class for conuclear V-algebras).
Consider a variety V ⊆ ICRL such that each finite partial subalgebra of each A ∈ Vfsi has
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a (weak) ω-embedding into K ⊆ V. Then the variety of conuclear V-algebras is generated
as a universal class by conuclear SPfin(K)-algebras:

Cx(V) = UCxSPfin(K).

Proof. This follows immediately from Theorem 4.9 and Lemma 4.10. □

5. CONUCLEAR EXPANSIONS OF ABELIAN ℓ-GROUP CONES

We now move from the universal algebraic level to the particular case of Abelian
ℓ-group cones. The goal of this section is to apply the main result of the previous
section (Theorem 4.11) to the particular case of Abelian ℓ-group cones and thereby
obtain a useful generating set for conuclear Abelian ℓ-group cones (Theorem 5.9).
In doing so, we will rely on the Hahn representation of totally ordered Abelian
groups (Theorem 5.1) in terms of real-valued functions on chains. Applying the
restriction to finite partial algebras of the form ⟨SgA X,2S⟩ (Lemma 3.2) to our
generating set for conuclear Abelian ℓ-group cones, we then deduce that conuclear
Abelian ℓ-group cones have a decidable universal theory (Theorem 5.10).

This will yield a number of further decidability results as corollaries. The uni-
versal theory of Abelian ℓ-groups equipped with a negative conucleus is also
decidable (Theorem 5.15). Given that, by the Montagna–Tsinakis representation
(Theorem 5.16), the conuclear images of Abelian ℓ-group cones are known to be
precisely the cancellative ICRLs, we may further deduce the decidability of the
universal theory of cancellative ICRLs (Theorem 5.18).

An Abelian lattice-ordered group, or Abelian ℓ-group for short, is an algebra of the
form ⟨G,∧,∨,+, 0,−⟩ such that ⟨G,∧,∨⟩ is a lattice, ⟨G,+, 0,−⟩ is an Abelian
group, and ⟨G,∨,+, 0⟩ is an sℓ-monoid. Each Abelian ℓ-group is fully distributive,
i.e. it is a distributive lattice and satisfies

x + (y ∧ z) = (x + y) ∧ (x + z), (x ∧ y) + z = (x + z) ∧ (y + z).

It will be convenient to use additive notation for Abelian ℓ-groups because we will
represent them by means of real-valued functions.

Abelian ℓ-groups form a variety AbLG which is term-equivalent to the variety
of commutative residuated lattices axiomatized by the equation x · (x\1) = 1: in
one direction we take (x · y := x + y and 1 := 0 and)

x\y := −x + y, x/y := x − y,

while in the other direction we take (x + y := x · y and 0 := 1 and)

−x := x\1 = 1/x.

A totally ordered Abelian group is an Abelian ℓ-group whose lattice reduct is a
chain. These are precisely the finitely subdirectly irreducible Abelian ℓ-groups. A
key example is the additive group of reals with the usual ordering:

R := ⟨R, min, max,+, 0,−⟩.
The additive groups Q and Z of rationals and integers are subalgebras of R.

An Abelian ℓ-group cone is the negative cone G− of some Abelian ℓ-group G.
In accordance with the additive notation for Abelian ℓ-groups, we will also use
additive notation for Abelian ℓ-group cones, writing x ⊖ y for x/y. It was shown
in [5] that Abelian ℓ-group cones form a subvariety AbLG− of ICRL axiomatized
by cancellativity, i.e. the equation (x + z)⊖ (y + z) = x ⊖ y, and divisibility, i.e. (in
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the context of integral residuated lattices) the equation (x ⊖ y) + y = x ∧ y. The
cancellativity equation is equivalent to the cancellativity of the monoid reduct:

x + z = y + z =⇒ x = y.

The totally ordered Abelian ℓ-group cones form precisely the class of finitely sub-
directly irreducible Abelian ℓ-group cones, denoted by AbLG−

fsi.
Throughout this section, Γ denotes a chain. Given a totally ordered Abelian

group G, the set GΓ of all functions f : Γ → G is an Abelian group with group
operations computed componentwise. The support of a function f ∈ GΓ is the set

supp f := {p ∈ Γ | f (p) ̸= 0}.

The lexicographic power of G with respect to Γ is the following subgroup of GΓ:

Lex(Γ, G) := { f ∈ GΓ | supp f satisfies the ascending chain condition}.

Lex(Γ, G) has the structure of a totally ordered Abelian group with

f ≤ g in Lex(Γ, G) ⇐⇒ f (i) ≤ g(i) for each i ∈ max supp(g − f ).

This is a total order because max supp(g − f ) = max supp( f − g) for f , g ∈
Lex(Γ, G) is either empty (if f = g) or it is a singleton. We use Lex(n, G) as an
abbreviation for Lex(Γ, G) where Γ := {1, . . . , n} is the canonical n-element chain.

Theorem 5.1 (The Hahn representation [27, 4]).
Each totally ordered Abelian group embeds into Lex(Γ, R) for some chain Γ.

In this section we shall use the additive notation ω f ≤ g instead of f ω ≤ g.

Lemma 5.2 (The relation ω f ≰ g on Lex−(Γ, R)).
Consider f , g < 0 in Lex(Γ, R) for some chain Γ. Then

ω f ≰ g ⇐⇒ p < q for max supp f = {p} and max supp g = {q}.

Proof. Either p < q or p = q or p > q. If p < q, then g(q) < 0 = n f (q) for
all n ∈ N, so g < n f and n f ≰ g in Lex−(Γ, R), i.e. ω f ≰ g. If p = q, then
n f (p) ≤ g(p) for some n ∈ N by the Archimedean property of R, so n f ≤ g in
Lex−(Γ, R) and ω f ≤ g. If q < p, then f (p) < 0 = g(p), so f ≤ g in Lex−(Γ, R)
and ω f ≤ g. □

Lemma 5.3 (From chains to finite chains).
Each finite partial subalgebra of Lex−(Γ, R) has a weak ω-embedding into Lex−(∆, R)
for some finite ∆ ⊆ Γ.

Proof. Consider a finite set X ⊆ Lex−(Γ, R). We show that for large enough
finite ∆ ⊆ Γ the restriction map ρ∆ : Lex−(Γ, R) → Lex−(∆, R) restricts to a weak
ω-embedding of Lex−(Γ, R)|X into Lex−(∆, R). Because X is finite, the restriction
ρ∆|X is injective for large enough ∆. The map ρ∆ preserves the group operations,
since these are computed componentwise in Lex−(Γ, R) and Lex−(∆, R). If the
singleton set max supp(g − f ) is included in ∆ for each of the finitely many pairs
f ̸= g in X, then ρ∆|X is an order embedding on X. Finally, if the singleton set
max supp f is included in ∆ for each of the finitely many f ̸= 0 in X, then by
Lemma 5.2 the map ρ∆|X satisfies the implication

ω f ≰ g in Lex−(Γ, R) =⇒ ωρ∆( f ) ≰ ρ∆(g) in Lex−(∆, R). □



DECIDABILITY FOR CLASSES OF IRL’S WITH A CONUCLEUS 27

Lemma 5.4 (Rational solutions are dense).
The set of rational solutions of each finite system of linear equalities and strict linear
inequalities with rational coefficients is a dense subset of its set of real solutions.

Proof. Let us first consider the case where the system contains no inequalities.
Gaussian elimination shows that either the solution set is empty or there are vec-
tors v0, . . . , vk with rational coefficients such that the solution set consists of all
vectors of the form v0 + λ1v1 + . . . λkvk for λ1, . . . , λk ∈ R. The set of rational
solutions is then the set of all vectors of this form with λ1, . . . , λk ∈ Q, which is
clearly a dense subset of the solution set.

If the system contains some inequalities and x is a real solution of this system,
then by the previous paragraph there are rational vectors arbitrarily close to x
which satisfy all the equalities in the system. Moreover, since x satisfies all the
strict linear inequalities of the system, these inequalities will be satisfied in each
rational vector close enough to x. Consequently, there are rational solutions of the
system of equalities and inequalities arbitrarily close to x. □

Lemma 5.5 (From R to Z).
Each finite partial subalgebra of Lex−(n, R) has a weak ω-embedding into Lex−(n, Z).

Proof. It will suffice to show that each finite partial subalgebra of Lex−(n, R) has
a weak ω-embedding into Lex−(n, Q): clearly each finite partial subalgebra of
Lex−(n, Q) has a weak ω-embedding into Lex−(n, Z) given by multiplication by
any natural number which is sufficiently large in the divisibility order.

We first show that we need not be concerned with preserving residuals, i.e.
with preserving the operation ⊖. Given a partial subalgebra G−|X of an Abelian
ℓ-group cone G−, an embedding ι of G−|X into an Abelian ℓ-group cone H−

preserves the operation ⊖ if X is closed under binary meets and the embedding
preserves addition and binary meets. To see this, consider a, b ∈ G−. The element
a ⊖G b = (a ∧G b)⊖G b satisfies (a ⊖G b) +G (a ∧G b) = a by the divisibility of G,
so ι(a ⊖G b) +H (ι(a) ∧H ι(b)) = ι(a). But (ι(a)⊖H ι(b)) +H (ι(a) ∧H ι(b)) = ι(a)
by the divisibility of H, so ι(a ⊖G b) = ι(a)⊖H ι(b) by the cancellativity of H.

Because each finite partial subalgebra of Lex−(n, R) is a restriction of a finite
partial subalgebra of Lex−(n, R) which is closed under binary meets, it therefore
suffices to show that each finite partial subalgebra of Lex−(n, R) with universe
{a1, . . . , am} has a weak ω-embedding into Lex−(n, Q) with respect to the lattice
and monoid operations. We do so by associating a finite system of linear equalities
and strict inequalities with integer coefficients to this partial subalgebra.

The variables of this system will be xi,p for i ∈ {1, . . . , m} and p ∈ {1, . . . , n}.
By the original interpretation of variables we mean the interpretation of xi,p as
ai,p := ai(p). Whenever ai + aj = ak, we add the equalities xi,p + xj,p = xk,p for
p ∈ {1, . . . , n}. We also add all of the following (in)equalities which are satisfied
under the original interpretation for i, j ∈ {1, . . . , m} and p, q ∈ {1, . . . , n}:

xi,p = xj,q, xi,p < xj,q, xi,p > xj,q,
xj,p = xk,q, xj,p < xk,q, xj,p > xk,q,
xk,p = xi,q, xk,p < xi,q, xk,p > xi,q,
xi,p = 0, xi,p < 0, xi,p > 0.
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The original interpretation xi,p := ai,p is a real solution of this system. By
Lemma 5.4 there is a rational solution xi,p := bi,p ∈ Q of this system arbitrarily
closed to the original interpretation. Each such rational solution determines a
partial subalgebra of Lex−(n, Q) which is isomorphic to the original subalgebra
of Lex−(n, R) via the function ι mapping ai to bi, where bi(p) := bi,p. The fact that
this is an bijection which preserves existing sums and the constant 0 is immediate.
The fact this it is an order embedding follows from the fact that the validity of
an inequality ai < aj in Lex−(n, R) corresponds to some set of equalities and
inequalities in the above system: if ai < aj, then either ai(n) < aj(n) or ai(n) =
aj(n) and ai(n − 1) < aj(n − 1) or . . . , so one of these options is recorded in the
above system of equalities and inequalities, hence ai < aj in Lex−(n, R) implies
that bi < bj in Lex−(n, Q). Similarly, Lemma 5.2 ensures that the equalities and
inequalities in our system record whether the condition ωai ≰ aj holds, so ωai ≰ aj
in Lex−(n, R) implies that ωbi ≰ bj in Lex−(n, Q). □

Lemma 5.6. Each finite partial subalgebra of Lex−(n, Z) for each n ∈ N has a weak
ω-embedding into (Z−)n.

Proof. Consider for k ∈ N the finite set

Xk := { f ∈ Lex−(n, Z) | −k ≤ f (i) ≤ k for each i < n}.

Because each finite subset of Lex−(n, Z) is contained in Xk for some k ∈ N, it will
suffice to prove that the finite partial subalgebra of Lex−(n, Z) with universe Xk
has a weak ω-embedding into (Z−)n for each k ∈ N. As in the proof of Lemma 5.5,
it suffices to find an order embedding of Xk into (Z−)n which preserves addition.

We define the map ι : Lex(n, Z) → Zn as

ι : f 7→ f (1)a1 + · · ·+ f (n)an

for some suitable a1, . . . , an ∈ Zn to be determined later. This map clearly pre-
serves addition. We first show that ι indeed restricts to a map ι : Xk → (Z−)n.
That is, f (1)a1 + · · ·+ f (n)an ≤ 0 in Zn for f ∈ Xk. This holds trivially for f = 0.
Otherwise, max supp f = {i} for some i ∈ {1, . . . , n} and f (i) ≤ −1, so it suffices
to prove that ai ≥ f (1)a1 + · · ·+ f (i − 1)ai−1 in Zn. Because f ∈ Xk, it suffices to
choose ai ≥ k(a1 + · · ·+ ai−1), in particular a1 ≥ 0.

To prove that ι restricted to Xk is an order embedding, we need to prove that

f (1)a1 + · · ·+ f (n)an ≤ g(1)a1 + · · ·+ g(n)an ⇐⇒ f ≤ g in Lex(n, Z)

for all f , g ∈ Xk. Taking h := g − f , it suffices to prove that

0 ≤ h(1)a1 + · · ·+ h(n)an in Zn ⇐⇒ 0 ≤ h(i) for each i ∈ max supp h.

If f = g, this holds trivially. Otherwise, let i be the unique element of max supp h.
The above equivalence then states that

0 ≤ h(1)a1 + · · ·+ h(i)ai ⇐⇒ 0 ≤ h(i),

That is, h(i) ≥ 1 implies 0 ≤ h(1)a1 + · · · + h(i)ai, and h(i) ≤ −1 implies 0 ≰
h(1)a1 + · · · + h(i)ai. Equivalently, −h(1)a1 − · · · − h(i − 1)ai−1 ≤ ai, and ai ≰
h(1)a1 + · · · + h(i − 1)ai−1. Because |h(j)| ≤ 2k for j ∈ {1, . . . , i − 1}, this is
equivalent to 2k(a1 + · · · + ai−1) ≤ ai, and ai ≰ 2k(a1 + · · · + ai−1). It therefore
suffices to choose ai so that ai > 2k(a1 + · · ·+ ai−1), in particular a1 > 0.
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Finally, we need to prove that ω f ≰ g in Lex−(n, Z) for f , g ∈ Xk implies
ωι( f ) ≰ ι(g) in (Z−)n. If f = 0 or g = 0, this holds trivially. Otherwise, ω f ≰ g
in Lex−(n, Z) implies that p < q for max supp f = {p} and max supp g = {q} by
Lemma 5.2. Then ι( f ) = f (1)a1 + · · ·+ f (p)ap and ι(g) = g(1)a1 + · · ·+ g(q)aq.
To ensure that ωι( f ) ≰ ι(g), it suffices to choose a1, . . . , an ≥ 0 in Zn so that
ω(−a1 − · · · − ap) ≰ −aq for q > p. To this end, it suffices to choose πj(ai) = 0 for
j > i and πi(ai) > 0, where πj : Zn → Z denotes the projection maps.

The three constraints obtained above are easy to satisfy: take c1 := 1 and ci+1 :=
2k(c1 + · · ·+ ci) + 1 and ai := ⟨ci, . . . , ci, 0, . . . , 0⟩ with i non-zero components. □

Lemma 5.7 (From chains to Pfin(Z
−)).

Each finite partial subalgebra of each totally ordered Abelian ℓ-group cone has a weak ω-
embedding into Pfin(Z

−).

Proof. Hahn’s representation (Theorem 5.1) and Lemmas 5.3 and 5.5 imply that
each finite partial subalgebra of G− has a weak ω-embedding into Lex−(n, Z) for
some n ∈ N, given that a well-defined composition of weak ω-embeddings is
again a weak ω-embedding. □

Lemma 5.8. ISPfin(Z) = IPfin(Z). Consequently, ISPfin(Z
−) = IPfin(Z

−).

Proof. The first claim follows from [9, Chapter XIII, Theorem 10], which states that
each ℓ-group G such that G− has no infinite ascending chains is isomorphic to

⊕i∈IZ := { f ∈ ZI | f (i) = 0 for all but finitely many i ∈ I}
for some set I.7 Each (Zk)−, hence each G− for G ≤ Zk, satisfies the ascending
chain condition, so G ∼= ⊕i∈IZ for some set I. Moreover, Zk and therefore also G
satisfies the following universal sentence: if a1 ∨ · · · ∨ ak+1 = 0, then there is some
j ∈ {1, . . . , k + 1} such that

∨
i ̸=j ai = 0. Consequently, |I| ≤ k and G ∼= ZI .

To prove the second claim, it suffices to prove that each subalgebra of Z− is
the restriction to the negative cone of a subalgebra of Z. To this end, observe that
for each Abelian ℓ-group term t(x1, . . . , xn) there is some Abelian ℓ-group cone
term u(x1, . . . , xn) such that 0 ∧ tG(a1, . . . , an) = uG−

(a1, . . . , an) for each Abelian
ℓ-group G and a1, . . . , an ∈ G−. This holds because t is equal to a distributive
lattice combination of Abelian group terms, so 0∧ t is equal to a distributive lattice
combination of terms of the form 0 ∧ (x1 + · · ·+ xm − y1 − · · · − yn), and for all
a1, . . . , am, b1, . . . , bn ∈ G−

0 ∧ (a1 + · · ·+ am − b1 − · · · − bn) = (a1 + · · ·+ am)⊖G−
(b1 + · · ·+ bn). □

Theorem 5.9 (Generation for conuclear Abelian ℓ-group cones).
The variety of conuclear Abelian ℓ-group cones is generated as follows:

Cx(AbLG−) = UCxPfin(Z
−).

Proof. This follows from Lemma 5.7 and Theorem 4.11, since the finitely sub-
directly irreducible Abelian ℓ-group cones are the totally ordered ones. Lemma 5.8
is used to reduce SPfin(Z

−) to Pfin(Z
−). □

Theorem 5.10 (Decidability for conuclear Abelian ℓ-group cones).
The universal theory of conuclear Abelian ℓ-group cones is decidable.

7We are grateful to Filip Jankovec for pointing out this reference to us.
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Proof. Because the universal theory of conuclear Abelian ℓ-group cones is finitely
axiomatizable, it is recursively enumerable. We show that its complement (in the
set of all universal sentences) is also recursively enumerable.

Consider a universal sentence ∀z1 . . . ∀zn ϕ, where ϕ is a quantifier-free formula
in the signature of Abelian ℓ-group cones. By Theorem 5.9, ϕ fails to hold in some
Abelian ℓ-group cone with a conucleus if and only if it fails to hold in CxS((Z−)k)
for some k ∈ N. By Lemma 3.2 this happens if and only if there is a finite set
X ⊆ A := (Z−)k and coinitial S ⊆ X such that the universal sentence fails in
the partial algebra ⟨SgA X,2S⟩|X . This means that there is a map v evaluating
the variables of ϕ in X such that the universal sentence ϕ is evaluated as false in
⟨SgA X,2S⟩|X with respect to v. All the operations of (SgA X)|X are simply the
restrictions of the computable operations of (Z−)k to the given finite set X, which
are computable from the parameters k and X.

To prove that the complement of the universal theory of Abelian ℓ-group cones
with a conucleus is recursively enumerable, it therefore suffices to show that the
operation 2S is computable from the parameters k, X, and S. This follows from
Lemma 3.12, using the fact that the condition ωa ≤ b for a, b ∈ (Z−)k has a
uniform decision procedure for all k ∈ N, namely it is equivalent to: πi(b) < 0
implies πi(a) < 0 for each i ∈ {1, . . . , k}.

Alternatively, this also follows from Lemma 3.13, using Lemma 5.11. While
Lemma 5.11 is not needed in the current section, given the simpler argument in
the previous paragraph, it will be needed in Sections 7 and 8. □

Lemma 5.11. For A := Lex−(n, Z)k there are decision procedures (uniform in k and n)
for the conditions ⟨S⟩A ∩ ↓ a = ∅ for a ∈ A and ⟨S⟩A ∩ (↓ a − ↓ b) for b ≤ a in A.

Proof. These problems are equivalent to the problem of deciding whether, given
a pair b ≤ a in A (or given a ∈ A) and a finite set S ⊆ A, the submonoid of A
generated by S intersects ↓ a − ↓ b (intersects ↓ a). This submonoid consists of the
elements α1x1 + · · ·+ αnxm for x1, . . . , xm ∈ X and α1, . . . , αm ∈ N. We thus wish
to decide whether there are α1, . . . , αm ∈ N such that α1x1 + · · ·+ αmxm ≤ a but
α1x1 + · · ·+ αmxm ≰ b (or merely such that α1x1 + · · ·+ αmxm ≤ a). This is some
finite Boolean combination of conditions of the forms

α1x1,i + · · ·+ αmxm,i < k,

α1x1,i + · · ·+ αmxm,i > k,

where xj,i := xj(i) for j ∈ {1, . . . , m} and i ∈ {0, . . . , n − 1}. Each such Boolean
combination is equivalent to a finite disjunction of finite conjunctions of conditions
of these forms. It therefore suffices to show that it is decidable whether there are
α1, . . . , αn ∈ N satisfying a finite conjunction of conditions of this type.

This is straightforward. Given y1, . . . , ym ∈ N and k ∈ N, the solution set
of a condition of the form α1y1 + · · · + αmym < k is empty if yj ≥ k for all j ∈
{1, . . . , m}, otherwise it is a downset of Nn

∞ generated by a non-empty finite set
which can be computed from the condition. The solution set of a condition of the
form α1y1 + · · · + αmym > k is empty if yj = 0 for all j ∈ {1, . . . , m}, otherwise
it is an upset of Nn

∞ generated by a non-empty finite set which can be computed
from the condition. Finally, given a finite set of finitely generated downsets of
Nn

∞ and a finite set of finitely generated upsets of Nn
∞, the problem of computing

whether their intersection is non-empty reduces this to the problem of computing
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whether intersection of a finite set of principal downsets of Nn
∞ and a finite set of

principal upsets of Nn
∞ is non-empty. But ↓ p1 ∩ · · · ∩ ↓ pi = ↓(p1 ∧ · · · ∧ pi) and

↑ q1 ∩ · · · ∩ ↑ qj = ↑(q1 ∨ · · · ∨ qj) for p1, . . . , pi, q1, . . . , qj ∈ Nn
∞, and ↓ p ∩ ↑ q is

non-empty if and only if q ≤ p. □

It is now straightforward to derive an analogous generation and decidability
result for Abelian ℓ-groups equipped with a negative conucleus.

The following lemma, if we ignore all mention of conuclei, was in effect estab-
lished in [5, Section 7], using a somewhat different argument.

Lemma 5.12. There is a computable translation τ− from universal sentences in the sig-
nature of Abelian ℓ-group with a negative conucleus to the signature of Abelian ℓ-group
cones with a conucleus such that ⟨G,2⟩ ⊨ ϕ if and only if ⟨G−,2⟩ ⊨ τ−(ϕ).

Proof. For each n-ary term t in the former signature there are by induction terms
t+ and t− of arity 2n in the latter signature such that for each Abelian ℓ-group with
a negative conucleus G and all a1, . . . , an ∈ G

(0 ∧ t)G(a1, . . . , an) = tG−
+ (0 ∧ a1, 0 ∧−a1, . . . , 0 ∧ an, 0 ∧−an),

(0 ∧−t)G(a1, . . . , an) = tG−
− (0 ∧ a1, 0 ∧−a1, . . . , 0 ∧ an, 0 ∧−an).

The base case where t is a variable is trivial, and the inductive steps are as follows:

(−t)+ := t−, (t ∧ u)+ := t+ ∧ u+, (t ∨ u)+ := t+ ∨ u+,

(−t)− := t+, (t ∧ u)− := t− ∨ u−, (t ∨ u)− := t− ∧ u−,

(t + u)+ := (t+ + u+)⊖ (t− + u−), (2t)+ := 2t,

(t + u)− := (t− + u−)⊖ (t+ + u+), (2t)− := 0.

The step for (t + u)+ uses the fact that, since (0 ∨ x) + (0 ∧ x) = x,

((0 ∧ x) + (0 ∧ y))⊖ ((0 ∧−x) + (0 ∧−y))

= 0 ∧ (−(0 ∧−y)− (0 ∧−x) + (0 ∧ x) + (0 ∧ y))

= 0 ∧ ((0 ∨ x) + (0 ∧ x) + (0 ∨ y) + (0 ∧ y)) = 0 ∧ (x + y)

Substituting x 7→ −x and y 7→ −y yields that ((0 ∧ −x) + (0 ∧ −y))⊖ ((0 ∧ x) +
(0 ∧ y)) = 0 ∧ (−x − y) = 0 ∧ −(x + y), establishing the step for (t + u)−. The
step for 2 uses the facts that 2(0 ∧ x) = 2x = 0 ∧2x and 0 ∧−2x = 1 for each a
conucleus 2.

In each Abelian ℓ-group x = y if and only if 0 ∧ x = 0 ∧ x and 0 ∧−x = 0 ∧−y:
right to left, x = (0 ∧ x) + (0 ∨ x) = (0 ∧ x)− (0 ∧ −x) = (0 ∧ y)− (0 ∧ −y) =
(0 ∧ y) + (0 ∨ y) = y. Taking τ−(t = u) := (t+ = u+) & (t− = u−), for each
Abelian ℓ-group equation ε(x1, . . . , xn) we have

G ⊨ ε(a1, . . . , an) ⇐⇒ G− ⊨ τ−(ϕ)(0 ∧ a1, 0 ∧−a1, . . . , 0 ∧ an, 0 ∧−an).

Letting τ− commute with negations and conjunctions and disjunctions, we obtain
the desired translation. □

Remark 5.13. The paper [5] establishes a categorical equivalence between ℓ-groups
and ℓ-group cones via the negative cone functor, using the description of categor-
ical equivalence between varieties due to McKenzie [33]. In the same way, the
translation given in the proof of Lemma 5.12 immediately yields an equivalence
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between the categories of (Abelian) ℓ-groups with a negative conucleus and of
(Abelian) ℓ-group cones with a conucleus.

Theorem 5.14 (Generation for Abelian ℓ-groups with a negative conucleus).
The variety of Abelian ℓ-groups with a negative conucleus is generated as follows:

Cx−(AbLG) = UCx−Pfin(Z).

Proof. This follows immediately from Theorem 5.9 and Lemma 5.12. □

Theorem 5.15 (Decidability for Abelian ℓ-groups with a negative conucleus).
The universal theory of Abelian ℓ-groups with a negative conucleus is decidable.

Proof. This follows immediately from Theorem 5.10 and Lemma 5.12. □

We can also easily derive generation and decidability results for the conuclear
images (rather than conuclear expansions) of Abelian ℓ-group cones.

Theorem 5.16 (The Montagna–Tsinakis representation [37, 36]).
The conuclear images of Abelian ℓ-groups (Abelian ℓ-group cones) are precisely the (inte-
gral) cancellative commutative residuated lattices.

Theorem 5.17 (Generation for cancellative ICRLs).
The variety C(AbLG−) of cancellative ICRLs is generated as follows:

C(AbLG−) = UCPfin(Z).

Proof. This follows immediately from Theorem 5.14 and Lemma 2.7. □

Theorem 5.18 (Decidability for integral cancellative commutative RLs).
The universal theory of integral cancellative commutative RLs is decidable.

Proof. In view of Lemma 2.7, this follows immediately from the decidability of
the universal theory of conuclear Abelian ℓ-group cones (Theorem 5.10) and the
Montagna–Tsinakis representation (Theorem 5.16). □

6. CONUCLEAR EXPANSIONS OF UNIT INTERVALS

We now derive further corollaries of the generation and decidability results
for conuclear Abelian ℓ-groups cones, namely generation and decidability results
for conuclear MV-algebras (Theorems 6.8 and 6.10), which are precisely the unit
intervals of conuclear Abelian ℓ-group cones (Theorem 6.7).

Unit intervals are a particular kind of nuclear images on integral residuated
lattices. A nucleus on a residuated lattice A is a closure operator 3 which satisfies
the inequality 3x ·3y ≤ 3(x · y). Its image

A3 := {3(a) | a ∈ A} = {a ∈ A | a = 3(a)}
carries the structure of a residuated lattice which is a subalgebra of A with respect
to ∧, \, / and its join ∨3, product ·3, and unit 13 are defined as follows:

x ∨3 y := 3(x ∨ y), x ·3 y := 3(x · y), 13 := 3(1).

Residuated lattices of the form A3 are called nuclear images of A.
Given an integral residuated lattice A and u ∈ A, the map 3u : x 7→ u ∨ x is a

nucleus on A whose image is the interval [u, 1]A := A3u = {a ∈ A | u ≤ a ≤ 1}.
Note that [u, 1]A is a bounded integral residuated lattice with bottom element u. We
call such bounded integral residuated lattices unit intervals of A.
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Lemma 6.1. Let 2 be a conucleus and 3 a nucleus on a residuated lattice A such that
32x ≤ 23x. Then the restriction of 2 to A3 is a conucleus on A3.

Proof. For a ∈ A3 we have 2a ≤ 32a ≤ 23a = 2a, so indeed 2a ∈ A3. Clearly
the restriction of 2 to A3 remains an order preserving map. Moreover, 13 = 31 =
321 ≤ 231 = 2(13) ≤ 13, so 2(13) = 13. Finally, 2x ·3 2y = 3(2x ·2y) ≤
32(x · y) ≤ 23(x · y) = 2(x ·3 y) for x, y ∈ A3. □

Accordingly, a nucleus 3 on a conuclear residuated lattice ⟨A,2⟩ is defined as a
nucleus 3 on A which satisfies the inequality 32x ≤ 23x. The nuclear image of
⟨A,2⟩ with respect to 3 is A3 equipped with the restriction of 2 to A3.

In particular, the condition 3u2x ≤ 23ux is equivalent to u = 2u. In that
case, we write 2u for the restriction of 2 to A3u and we call bounded conuclear
residuated lattices of the form ⟨Au,2u⟩ unit intervals of ⟨A,2⟩.

Given a (conuclear) integral residuated lattice A, let Int(A) be the set of unit
intervals of A. Given a class K of (conuclear) integral residuated lattices, let Int(K)
be the class of unit intervals of algebras in K. Keep in mind that Int(K) is a class
of bounded (conuclear) integral residuated lattices.

The last item in the following lemma will not be needed in this paper, but it
makes for a natural companion to the other items.

Lemma 6.2. Let K be a class of (conuclear) integral residuated lattices. Then:
(i) Int(I(K)) = I(Int(K)).

(ii) Int(H(K)) ⊆ H(Int(K)).
(iii) Int(S(K)) ⊆ S(Int(K)).
(iv) Int(P(K)) = P(Int(K)).
(v) Int(Pfin(K)) = Pfin(Int(K)).

(vi) Int(PU(K)) = PU(Int(K)).
If K is a class of (conuclear) integral commutative residuated lattices, then moreover:

(vii) Int(H(K)) = H(Int(K)).

Proof. We omit the straightforward proofs for I, P, Pfin, and PU.
(ii): consider A ∈ K, a surjective homomorphism h : A ↠ B, and v ∈ B. There

is some u ∈ A with h(u) = v. Consider the map g : [u, 1]A → [v, 1]B defined as
the restriction of h to the interval [u, 1]. This map is surjective: given y ∈ [v, 1],
there is some x ∈ A with h(x) = y, so h(x ∨ u) = h(x) ∨ h(u) = y ∨ v = y and
x ∨ u ∈ [u, 1]. It is a homomorphism with respect to multiplication: g(x ·[u,1]A

y) = g(u ∨ (x · y)) = h(u ∨ (x · y)) = h(u) ∨ (h(x) · h(y)) = v ∨ (h(x) · h(y)) =

v ∨ (g(x) · g(y)) = g(x) ·[v,1]B g(y). It is also a homomorphism with respect to all
other residuated lattice operations, since these coincide in [u, 1]A and A, and in
[v, 1]B and B.

(iii): consider u ∈ A ≤ B ∈ K. Then [u, 1]A ≤ [u, 1]B ∈ Int(K), since x ·[u,1]A y =

3A
u (x ·A y) = u ∨A (x ·A y) = u ∨B (x ·B y) = 3B

u (x ·B y) = x ·[u,1]B y and all other
operations in A coincides with those of A and therefore those of B.

(vii): it remains to show that H(Int(K)) ⊆ Int(H(K)) if K ⊆ ICRL. We use the
correspondence between the homomorphic images of A ∈ ICRL and the (multi-
plicative) filters of A, that is, non-empty upsets F closed under binary products.
The filters of A are in bijective correspondence with the congruences of A: the
filter F induces the congruence θF such that ⟨a, b⟩ ∈ θF if and only if a\b, b\a ∈ F.
We write a/F and A/F for a/θF and A/F.
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Consider an algebra A ∈ K, an element u ∈ A, and a filter F of [u, 1]A. Let G be
the filter of A generated by F. Then F = G ∩ [u, 1]A: clearly F ⊆ G ∩ [u, 1]A, and
conversely if a ∈ G ∩ [u, 1]A, then there are f1, . . . , fn ∈ F such that f1 ·A . . . ·A fn ≤
a, so u ∨ ( f1 ·A . . . ·A fn) ≤ a and f1 ·[u,1]A . . . ·[u,1]A fn ≤ a, hence a ∈ F.

It suffices to show that [u/F, 1]A/F = [u/G, 1/G]A/G. But the equality a/F =
b/F for a, b ∈ [u, 1]A holds if and only if a\b, b\a ∈ F = G ∩ [u, 1]A, which is
equivalent to a\b, b\a ∈ G, and therefore to a/G = b/G. The underlying sets
of [u/F, 1]A/F and [u/G, 1/G]A/G thus coincide. To prove that products coincide,
consider a, b ∈ [u, 1]A. The product of a/F and b/F in [u, 1]A/F is (u∨A (a ·A b))/F.
The product of a/G = a/F and b/G = b/F in [u/G, 1/G]A/G is (u/G) ∨A/G

((a/G) ·A/G (b/G)) = (u ∨A (a ·A b))/G = (u ∨A (a ·A b))/F. A similar but
simpler argument shows that the other residuated lattice operations also coincide
in the two algebras. □

The next two lemmas and theorem were in effect proved in an unpublished
note by Young [48]. We reproduce his proof below. What Young in fact proved
is that conuclear images of MV-algebras are precisely the unit intervals of integral
cancellative commutative residuated lattices. However, his proofs apply equally
well in a more general setting. In the following, a meet preserving nucleus is a
nucleus 3 such that 3(x ∧ y) = 3x ∧3y.

Lemma 6.3 ([48]). Let A be a residuated lattice, 3 a meet preserving nucleus on A, and
2 a conucleus on A3. Then 2 extends to a conucleus 2 := 23x ∧ x on A such that 3
is a nucleus on ⟨A,2⟩ and 2 = 23. Moreover, 3 := 23x is a nucleus on A2 such that
(A3)2 = (A2)3. If 3 = 3u for some u ∈ A, then 3 = x ∨2 u.

Proof. We show that 2 := 23x ∧ x is a conucleus on A. It is clearly an order
preserving map because 2 and 3 are order preserving. The inequality 2x ≤ x
holds by definition. Moreover,

2(2x) = 2(32x) ∧2x = 2(3(23x ∧ x)) ∧23x ∧ x.

But 23x ≤ 323x ∧3(x) = 3(23x ∧ x), therefore 23x ≤ 23(23x ∧ x). Thus,
22x = 2x. Finally, 2x ·2y ≤ 2(x · y):

2x ·2y = (23x ∧ x) · (23y ∧ y)

≤ (23x ·23y) ∧ xy

≤ 3(23x ·23y) ∧ xy = (23x ·3 23y) ∧ xy

≤ 2(3x ·3 3y) ∧ xy = 23(3x ·3y) ∧ xy

≤ 233(xy) ∧ xy = 23(xy) ∧ xy = 2(xy).

This proves that 2 is a conucleus on A. For x ∈ A3 clearly 2x = 23x ∧ x =
2x ∧ x = 2x, so 2 is indeed an extension of 2 to A.

Let 3x := 23x. Then 3x = 23(3x) ∧3x = 23x ∧3x = 23x. We show that
3 is a nucleus on A2. It is clearly an order preserving map because 2 and 3 are
order preserving. The inequality x ≤ 3x holds for x ∈ A2 because x ≤ 3x and
therefore x = 2x ≤ 23x = 3x. Moreover,

3(3x) = 2323x ≤ 233x = 23x = 3x,

and
3x ·3y = 23x ·23y ≤ 2(3x ·3y) ≤ 23(x · y) = 3(x · y).
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Since 3x ∈ A2 by definition, this proves that 3 is a nucleus on A2. To prove
that it is a nucleus on ⟨A,2⟩, we need to show that 32x ≤ 23x. But indeed
32x = 3(23x ∧ x) = 23(23x ∧ x) ≤ 2323x ∧23x = 2(23x) = 2(3x).

We now show that (A3)2 = (A2)3. Given x = 3x = 2x, we have 2x =
23x ∧ x = x and 3x = 3x = x. Conversely, given x = 2x = 3x, we have
x = 3x = 23x = 2x. The underlying sets of the algebras (A3)2 and (A2)3 are
therefore equal. Moreover, in both algebras the order is the restriction of the order
of A and multiplication is the operation 3(x · y), so the two algebras are equal.

Finally, suppose that 3x = x ∨A u for some u ∈ A. Then u ∈ A2, since 2u =
23u∧ u = 2u∧ u = 2u = u, where the last equality holds because 2 is an interior
operator on A3 and u is the least element of A3. Moreover, 3x = x ∨A2 u, since
3x = 23x = 2(x ∨ u) = x ∨A

2 u. □

Lemma 6.4 ([48]). For each class K of integral residuated lattices

Int(Cx(K)) ⊆ Cx(Int(K)), Int(C(K)) ⊆ C(Int(K)).

Proof. Consider an integral residuated lattice A, a conucleus 2 on A, and an ele-
ment u ∈ A2. The conucleus 2 restricts to an interior operator 2u on [u, 1]A, since
u ≤ a implies u = 2u ≤ 2a. The image of 2u is the same as the image of 2
restricted to [u, 1]A. Thus the interval ⟨[u, 1]A,2u⟩ ⊨ ϕ of the conuclear residuated
lattice ⟨A,2⟩ is a conuclear expansion of the interval [u, 1]A of A. □

Theorem 6.5 ([48]). For each class K of distributive integral residuated lattices

Int(Cx(K)) = Cx(Int(K)), Int(C(K)) = C(Int(K)).

Proof. This follows immediately from Lemma 6.3 and 6.4, since the nucleus 3ux :=
x ∨ u is meet preserving in each distributive integral residuated lattice. □

The above theorem now allows us to upgrade Mundici’s representation of MV-
algebras as intervals of Abelian ℓ-group cones [38] to conuclear MV-algebras.

Theorem 6.6 (The Mundici representation of MV-algebras [38]).
MV-algebras (totally ordered MV-algebras) are precisely the unit intervals of Abelian ℓ-
group cones (totally ordered Abelian ℓ-group cones).

Theorem 6.7 (The Young representation of conuclear MV-algebras [48]).
Conuclear MV-algebras (totally ordered conuclear MV-algebras) are precisely the unit
intervals of (totally ordered) conuclear Abelian ℓ-group cones. Consequently, the conuclear
images of MV-algebras are precisely the unit intervals of cancellative ICRLs.

Proof. The first claim follows immediately from the Mundici representation of MV-
algebras (Theorem 6.6) and Theorem 6.5, while the second claim follows from
the first claim plus the Montagna–Tsinakis representation of cancellative ICRLs
(Theorem 5.16). □

Let MVfin denote the class of finite MV-algebras. Since Int(Z−) is the class of all
finite totally ordered MV-algebras, MVfin = IPfin(Int(Z−)) [17, Proposition 3.6.5].

Theorem 6.8 (Generation for conuclear MV-algebras).
The variety of conuclear MV-algebras is generated as follows:

Cx(MV) = UCxPfin(Int(Z−)) = UCx(MVfin).

In particular, it has the Finite Embeddability Property.
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Proof. Theorems 5.9 and 6.7 yield the equalities Cx(MV) = Int(Cx(AbLG−)) =
Int(UCxPfin(Z

−)), so Cx(MV) ⊆ UCxPfin(Int(K)) holds by Lemma 6.2 and
Theorem 6.5. Conversely, Int(Z−) ⊆ MV, so UCxPfin(Int(Z−)) ⊆ UCx(MV) =
Cx(MV). □

Lemma 6.9. Let K be a class of (conuclear) integral residuated lattices. If the universal
theory of K is decidable, then so is the universal theory of Int(K).

Proof. Given the definition of the operations of [u, 1]A in terms of the operations
of the (conuclear) integral residuated lattice A, it is straightforward to define a
translation τint from terms in n variables in the signature of (conuclear) bounded
integral residuated lattices to terms in n + 1 variables in the signature of (co-
nuclear) integral residuated lattices, the last variable being the translation of the
constant ⊥, and to extend this translation to universal sentences in such a way that
Int(A) ⊨ ϕ if and only if A ⊨ τint(ϕ). □

Theorem 6.10 (Decidability for conuclear MV-algebras).
The universal theory of conuclear MV-algebras is decidable.

Proof. This follows immediately from Theorems 5.10 and 6.7 and Lemma 6.9. □

Describing the class C(MV) remains an open problem [36, Problem 10].

7. MEET PRESERVING CONUCLEI

The central observation on which the paper has rested thus far is that given a
finite subset X of an integral residuated lattice A and a coinitial subset S ⊆ X,
the sub-sℓ-monoid ⟨S⟩A generated by S is the image of a conucleus 2S on the
subalgebra SgA X of A. In this section, we shall restrict our attention to meet
preserving conuclei. This will involve replacing the sub-sℓ-monoid ⟨S⟩A by the
sub-ℓ-monoid ⟨⟨S⟩⟩A. We shall go over the results proved thus far, section by section,
and state how they need to be modified to account for this. Most results will be
entirely straightforward to modify, and in those case we omit the relevant proofs
to avoid duplicating the entire content of the paper thus far.

An ℓ-monoid is, for the purposes of this paper, an algebra ⟨A,∧,∨, ·, 1⟩ such
that ⟨A,∧,∨⟩ is a lattice and ⟨A,∨, ·, 1⟩ is an sℓ-monoid. A ∧-pomonoid is an
algebra ⟨A,∧, ·, 1⟩ such that ⟨A,∧⟩ is a meet semilattice, ⟨A, ·, 1⟩ is a monoid, and
moreover the following equations are satisfied:

x · (y ∧ z) = (x · y) ∧ (x · z), (x ∧ y) · z = (x · z) ∧ (y · z).

A distributive ℓ-monoid is an algebra ⟨A,∧,∨, ·, 1⟩ such that ⟨A,∧,∨⟩ is a distribu-
tive lattice and binary products distribute over both binary meets and joins, i.e.
⟨A,∨, ·, 1⟩ is an sℓ-monoid and ⟨A,∧, ·, 1⟩ is a ∧-pomonoid. (The asymmetry in
the terminology reflects the fact that in this section, ∧-pomonoids will play the
same role that pomonoids played in Section 3.)

A meet preserving conucleus or a ∧-conucleus for short on a residuated lattice A is a
conucleus 2 on A which satisfies the equation 2(x ∧ y) = 2x ∧2y. Equivalently,
it is a conucleus 2 whose image is closed under binary meets, i.e. A2 is a sub-
ℓ-monoid of A: being meet preserving implies that A2 is closed under binary
meets, and if A2 is closed under binary meets, then 2x ∧2y ∈ A2, so 2x ∧2(y =
2(2x ∧2y) ≤ 2(x ∧ y) ≤ 2x ∧2y.
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Given a class K of residuated lattices, C∧(K) denotes the class of all ∧-conuclear
images of algebras in K and Cx∧(K) denotes the class of all ∧-conuclear expansions
of algebras in K. Because the identity map is a ∧-conucleus, K ⊆ C∧(K) and each
residuated lattice is the reduct of some ∧-conuclear residuated lattice.

Recall that we call a residuated lattice fully distributive if its division-free reduct
is a distributive ℓ-monoid. The variety of fully distributive IRLs (ICRLs) will be
denoted by FdIRL (FdICRL). Because these varieties are axiomatized relative to IRL
by equations in the signature of ℓ-monoids, they are closed under meet preserving
conuclei. That is, C∧(FdIRL) = FdIRL and C∧(FdICRL) = FdICRL.

Given a fully distributive A ∈ IRL and a finite set S ⊆ A, let

⟨⟨S⟩⟩A := sub-ℓ-monoid of A generated by S.

That is, ⟨⟨S⟩⟩A consists of non-empty finite joins of non-empty finite meets of finite
products of elements of S. In other words, ⟨⟨S⟩⟩A is the join semilattice generated by
the ∧-pomonoid generated by S.

We now go through the results of Section 3, replacing conuclei by ∧-conuclei,
⟨S⟩A by ⟨⟨S⟩⟩A, and π-embeddings by what we call ∧π-embeddings. This is an
entirely mechanical task. We therefore omit the proofs except for the next lemma,
which replaces Lemma 2.12.

Lemma 7.1. Each finitely generated integral distributive ℓ-monoid satisfies the ascending
chain condition.

Proof. Let A be an integral distributive ℓ-monoid generated by a finite set X ⊆ A.
Let M be the submonoid of A generated by X. A double application of Higman’s
Lemma (Lemma 2.11) shows that the meet subsemilattice of A generated by M
is well partially ordered. Lemma 2.12 then shows that the join subsemilattice
generated by the meet subsemilattice generated by A satisfies the ascending chain
condition. But this join subsemilattice is A. □

Lemma 7.2 (The conuclear integral residuated lattice ⟨SgA X,2∧
S ⟩).

Consider a fully distributive A ∈ IRL, a set X ⊆ A, and a finite coinitial S ⊆ X. Then
⟨⟨S⟩⟩A is the image of a meet preserving conucleus 2∧

S on SgA X.

Lemma 7.3 (Finite partial subalgebras of ∧-conuclear IRLs).
Each finite partial subalgebra of a ∧-conuclear integral residuated lattice ⟨A,2⟩ is a
restriction of ⟨SgA X,2∧

S ⟩|X for some finite X ⊆ A and coinitial S ⊆ X.

Lemma 7.4. Consider K ⊆ FdIRL. If Cx∧(K) has the FEP, then so does C∧(K).

Theorem 7.5 (FEP for ∧-conuclear locally finite K-algebras).
Let K ⊆ IRL be a locally finite universal class. Then Cx∧(K) and C∧(K) have the FEP.

Consider a fully distributive A ∈ IRL, finite X ⊆ A, and coinitial S ⊆ X. An
embedding ι : A|X ↪→ B into a residuated lattice B will be called a ∧π-embedding if
for all words w1, . . . , wn ∈ Word X and all a ∈ X

wA
1 ∧ · · · ∧ wA

n ≤A a =⇒ ι(w1)
B ∧ · · · ∧ ι(wn)

B ≤B ι(a).

Lemma 7.6 (UCx∧S and ∧π-embeddings).
Suppose that each finite partial subalgebra of A ∈ FdIRL has a ∧π-embedding into some
algebra in K ⊆ FdIRL. Then Cx∧S(A) ⊆ UCx∧S(K).
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A fully distributive IRL has a locally finite monoid reduct if and only if it has a
locally finite distributive ℓ-monoid reduct.

Theorem 7.7 (UCx∧ = Cx∧U in the case of locally finite monoid reducts).
Consider K = S(K) ⊆ FdIRL such that U(K) has locally finite monoid reducts. Then

Cx∧U(K) = UCx∧(K).

Theorem 7.8 (FEP for conuclear FdIRLs with locally finite monoid reducts).
Let K be a universal class of FdIRLs with locally finite monoid reducts. If K has the FEP,
then so does the universal class Cx∧(K) of their ∧-conuclear expansions.

Corollary 7.9 (FEP for n-potent ∧-conuclear FdICRLs).
The variety of n-potent ∧-conuclear FdICRLs has the FEP.

We do not have an analogue of Lemma 3.12 of ∧-conuclei. However, we have
an analogue of Lemma 3.13.

Lemma 7.10. Consider A ∈ IRL with computable primitive operations. Each pair of
decision procedures for the conditions ⟨⟨s1, . . . , sn⟩⟩A ∩ ↓ a = ∅ for a, s1, . . . , sn ∈ A and
⟨⟨s1, . . . , sn⟩⟩A ∩ (↓ a − ↓ b) = ∅ for b ≤ a in A and s1, . . . , sn ∈ A yields a computation
procedure for the partial map ⟨S, a⟩ 7→ 2∧

S a, where S := {s1, . . . , sn} ⊆ A.

Next, we move to Section 4. Here the task of modifying our previous results
necessitates more substantial changes to some proofs. In particular, ω-embeddings
need to be replaced by what we call n-∧ω-embeddings, which are parametrized
by n ∈ N. We again omit those proofs whose modification is straightforward.

Given a pomonoid M, let Downω M denote the sℓ-monoid of finitely generated
downsets of M ordered by inclusion. Binary joins are unions in Downω M, the
monoidal unit is ↓ 1M, and products are defined as

X ∗ Y := ↓{x · y | x ∈ X and y ∈ Y}.

The map a 7→ ↓ a embeds M into Downω M as a subpomonoid.
Applying this construction to the pomonoid M := Multi X yields the sℓ-monoid

Multi∨ X := Downω Multi X. The elements of Multi∨ X are thus finitely generated
sets of multisets which are closed under taking submultisets.

Given an integral residuated lattice A, a finite set X ⊆ A, and a finitely gener-
ated downset W := ↓{w1, . . . , wn} ∈ Multi∨ X, we use the notation

WA := wA
1 ∧ · · · ∧ wA

n .

Lemma 7.11 (Higman’s Lemma for sets of multisets).
Let X be a finite set. Then each upset of Multi∨ X is finitely generated.

Proof. By Higman’s Lemma (Lemma 2.11), if a pomonoid M is dually integral (the
monoidal unit is the bottom element) and generated by a well partially ordered
set, then M itself is well partially ordered. Applying this lemma once to the sub-
monoid of Multi∨ X generated by the set {↓[x] | x ∈ X} ⊆ Multi∨ X shows that
{↓w | w ∈ Multi X} is a well partially ordered subset of Multi∨ X. Applying the
lemma again to the join subsemilattice of Multi∨ X generated by this submonoid
now yields the desired conclusion. □

Downsets of Multi∨ X need not be finitely generated. However, we show that
they are still finite unions of downsets of a special form. Let us call a downset D
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of Multi∨ X quasi-principal if there are u1, v1, . . . , uk, vk ∈ Multi X such that

W ∈ D ⇐⇒ W ⊆ ↓(u1 ⊕ mv1) ∪ · · · ∪ ↓(uk ⊕ mvk) for some m ∈ N.

For comparison, observe that a downset D of Multi∨ X is principal if there are
u1, . . . , uk ∈ Multi X such that

W ∈ D ⇐⇒ W ⊆ ↓ u1 ∪ · · · ∪ ↓ uk.

A downset of Multi∨ X will be called quasi-finitely generated if it is a finite union of
quasi-principal downsets.

Lemma 7.12 (Downsets of Multi∨ X).
Let S be a finite set. Then each downset of Multi∨ X is a quasi-finitely generated.

Proof. Consider a downset D of Multi∨ X. If D = Multi∨ X, the claim holds for
k := 1 if we take u1 := ∅ and we take v1 := ↓w1, where w1 is the multiset
containing exactly 1 occurrence of each element of X. If D = ∅, the claim holds
trivially, since D is then the union of an empty family of quasi-principal downsets.
We may therefore assume that ∅ ⊊ D ⊊ Multi∨ X.

Consider the non-empty upset U := Multi∨ X − D of Multi X. By Higman’s
Lemma (Lemma 2.11) the condition W ∈ U is equivalent to a non-empty finite
disjunction of conditions of the form W ′ ⊆ W for some W ′ ∈ Multi∨ X. Because D
is non-empty, U ⊊ Multi∨ X, so each of these W ′ ∈ Multi∨ X is non-empty. It thus
has the form W ′ := ↓w1 ∪ · · · ∪ ↓wk for some k ≥ 1 and w1, . . . , wk ∈ Multi X.
Consequently, W ′ ⊆ W if and only if ↓wi ⊆ W for each i ∈ {1, . . . , k}, i.e. if and
only if wi ∈ W for each i ∈ {1, . . . , k}.

Negating this non-empty finite disjunction of non-empty finite conjunctions of
conditions of the form wi ∈ W and transforming the negation into disjunctive
normal form yields that the condition W ∈ D is equivalent to a non-empty finite
disjunction of non-empty finite conjunctions of conditions of the form wi /∈ W. It
therefore suffices to show that a downset D of Multi∨ X is quasi-principal if there
are w1, . . . , wk ∈ Multi X with k ≥ 1 such that

W ∈ D ⇐⇒ w1 /∈ W and . . . and wk /∈ W.

Take
WD := {w ∈ Multi X | w1 ̸⊑ w and . . . and wk ̸⊑ w}.

Then for each W ∈ Multi∨ X

W ∈ D ⇐⇒ W ⊆ WD.

Note that it does not follow that D is a principal downset of Multi∨ X, since the
downset WD need not be finitely generated.

By Lemma 4.2 the downset WD of Multi X is quasi-finitely generated. That is,
there are u1, v1, . . . , ul , vl ∈ Multi X such that

w ∈ WD ⇐⇒ w ⊑ u1 ⊕ mv1 or . . . or w ⊑ ul ⊕ mvl for some m ∈ N,

or in other words

w ∈ WD ⇐⇒ w ∈ ↓(u1 ⊕ mv1) ∪ · · · ∪ ↓(ul ⊕ mvl) for some m ∈ N,

The elements of D are then precisely the finitely generated downsets of WD, so
they are precisely the sets W ∈ Multi∨ X such that

W ⊆ ↓(u1 ⊕ mv1) ∪ · · · ∪ ↓(ul ⊕ mvl) for some m ∈ N,

In other words, D is quasi-principal. □
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We shall use the abbreviation

a1 · bω
1 ∧ · · · ∧ an · bω

n ≰A c

for the claim that a1 · bp
1 ∧ · · · ∧ an · bp

n ≰A c for all p ∈ N.
Consider A ∈ FdICRL, a finite set X ⊆ A, and n ≥ 1. An embedding ι of A|X

into B ∈ FdICRL will be called an n-∧ω-embedding if for all a1, b1, . . . , an, bn, c ∈ A

a1 · bω
1 ∧ · · · ∧ an · bω

n ≰A c =⇒ ι(a1) · ι(b1)
ω ∧ · · · ∧ ι(an) · ι(bn)

ω ≰B ι(c).

Lemma 7.13. Consider totally ordered A, B ∈ ICRL and finite X ⊆ A. Then each ω-
embedding ι : A|X ↪→ B is an n-∧ω-embedding for each n ≥ 1.

Proof. This is an immediate consequence of the fact that a1 · bω
1 ∧ · · · ∧ an · bω

n ≤A c
if and only if ai · bω

i ≤A c for some i ∈ {1, . . . , n} for each totally ordered A ∈
ICRL. □

Let Pω(A) denote the set of finite subsets of A, and let N+ := N − {0}.

Lemma 7.14 (From ∧π-embeddings to ∧ω-embeddings).
Consider A ∈ FdICRL and K ⊆ FdICRL. There is a function f : Pω(A) → N+ such
that each finite partial subalgebra of A has a ∧π-embedding into K if and only if each finite
partial subalgebra A|X has an f (X)-∧ω-embedding into K.

Proof. The left-to-right direction holds for any f , since each ∧π-embedding is an
n-∧ω-embedding for each n ∈ N.

Conversely, we show that for each finite X ⊆ A we can find some finite exten-
sion Y ⊆ A of X and some n ∈ N such that each n-∧ω-embedding of A|Y into an
algebra B ∈ K restricts to a ∧π-embedding of A|X into B. It will suffice to find for
each a ∈ X some finite extension Ya ⊆ A of X and some na ∈ N such that for each
W ∈ Multi∨ X and each na-∧ω-embedding ι of A|Ya into B

(∗) WA ≤A a ⇐⇒ ι(W)B ≤B ι(a).

Taking Y :=
⋃

a∈X Ya and n := maxa∈X na then proves the lemma.
Given finite X ⊆ A and a ∈ X, let

Ua := {W ∈ Multi∨ X | WA ≤A a}.

Because A is integral, Ua is an upset of Multi∨ X. Higman’s Lemma (Lemma 7.11)
applied to Ua now provides W1, . . . , Wl ∈ Multi X such that for all W ∈ Multi∨ X

W ∈ Ua ⇐⇒ W1 ⊆ W or . . . or Wl ⊆ W.

On the other hand, Lemma 7.12 applied to the downset Multi∨ X − Ua provides
u1, v1, . . . , uk, vk ∈ Multi X such that for all w ∈ Multi X

W /∈ Ua ⇐⇒ W ⊆ ↓(u1 ⊕ mv1) ∪ · · · ∪ ↓(uk ⊕ mvk) for some m ∈ N.

In particular, WA
i ≤A a for each i ∈ {1, . . . , l}, while

uA
1 · (vA

1 )
ω ∧ · · · ∧ uk · (vA

k )
ω ≰A a.

Each Wi is a downset of Multi X generated by the finite set max Wi. We take

na := max(k, |max W1|, . . . , |max Wl |)
and we take Ya to be the extension of X by wA where w ranges over all subwords
(or at least over all initial segments and all letters) of u1, v1, . . . , uk, vk, w1, . . . , wl .
This ensures that ι(uA

1 ) = ι(u1)
B, . . . , ι(wA

l ) = ι(wl)
B.
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We now prove the left-to-right implication in (∗). Suppose that WA ≤A a for
W ∈ Multi∨ X. Then W ∈ Ua, so Wi ⊆ W for some i ∈ {1, . . . , l}, hence ι(Wi) ⊆
ι(W) and by integrality ι(W)B ≤B ι(Wi)

B. Because ι is an na-∧ω-embedding and
|max Wi| ≤ na, the inequality WA

i ≤A a implies that ι(Wi)
B ≤B ι(a), so ι(W)B ≤B

ι(Wi)
B ≤B ι(a).

It remains to prove the right-to-left implication in (∗). Suppose that WA ≰A a.
Then W /∈ U, so there is some m ∈ N such that

W ⊆ ↓(u1 ⊕ mv1) ∪ · · · ∪ ↓(uk ⊕ mvk),

hence also
ι(W) ⊆ ↓(ι(u1)⊕ mι(v1)) ∪ · · · ∪ ↓(ι(uk)⊕ mι(vk)).

Consequently,
(uA

1 · (vA
1 )

m) ∧ · · · ∧ (uA
k · (vA

k )
m) ≤A WA

and
(ι(u1)

B · ι(vB
1 )

m) ∧ · · · ∧ (ι(uk)
B · ι(vB

k )
m) ≤B ι(W)B.

On the other hand, we know that

(uA
1 · (vA

1 )
ω) ∧ · · · ∧ (uA

k · (vA
k )

ω) ≰A a.

Because ι is an na-∧ω-embedding and k ≤ na,

(ι(u1)
B · (ι(v1)

B)ω) ∧ · · · ∧ (ι(uk)
B · (ι(vk)

B)ω) ≰B ι(a).

The element (ι(u1)
B · (ι(v1)

B)ω) ∧ · · · ∧ (ι(uk)
B · (ι(vk)

B)ω) therefore witnesses
that indeed ι(W)B ≰B ι(a). □

Lemma 7.15. Let (Ai)i∈I be a finite family of FdICRLs, let A := ∏i∈I Ai, and let
πi : A → Ai be the projection maps. Then for all a1, b1, . . . , an, bn, c ∈ A

a1 · bω
1 ∧ · · · ∧ an · bω

n ≰A c
⇐⇒

πi(a1) · πi(b1)
ω ∧ · · · ∧ πi(an) · πi(bn)

ω ≰Ai πi(c) for some i ∈ I.

Lemma 7.16 (Reduction to finite subdirect products).
Cx∧ISP(K) ⊆ UCx∧SPfinPU(K) for each class K ⊆ FdICRL.

Proof. The proof of Lemma 4.8 carries over. The only change is that the algebras
Ca,b,c now need to be indexed by (2n + 1)-tuples a1, b1, . . . , an, bn, c ∈ X for n :=
f (X), where the function f : Pω(A) → N+ comes from Lemma 7.14. □

Theorem 7.17 (Generating class for ∧-conuclear V-algebras).
Consider a variety V ⊆ FdICRL. The variety of ∧-conuclear V-algebras is generated as a
universal class by the ∧-conuclear expansions of ISPfin(Vfsi):

Cx∧(V) = UCx∧SPfin(Vfsi).

Lemma 7.18. Suppose that each finite partial subalgebra of each A ∈ K ⊆ FdICRL has a
∧ω-embedding into L ⊆ FdICRL. Then Cx∧SPfin(K) ⊆ UCx∧SPfin(L).

Theorem 7.19 (Generating class for ∧-conuclear V-algebras).
Consider a variety V ⊆ FdICRL. Suppose that each finite partial subalgebra of each A ∈
Vfsi has a ∧ω-embedding into K ⊆ FdICRL. Then the variety of ∧-conuclear V-algebras
is generated as a universal class by ∧-conuclear SPfin(K)-algebras:

Cx∧(V) = UCx∧SPfin(K).
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Theorem 7.20 (Generation for Abelian ℓ-group cones with a ∧-conucleus).
The variety Cx(AbLG−) of Abelian ℓ-group cones with a ∧-conucleus is generated as:

Cx∧(AbLG
−) = UCx∧Pfin(Z

−).

Lemma 7.21. For A := Lex−(n, Z)k there are decision procedures (uniform in k and n)
for the conditions ⟨⟨S⟩⟩A ∩ ↓ a = ∅ for a ∈ A and ⟨⟨S⟩⟩A ∩ (↓ a − ↓ b) for b ≤ a in A.

Proof. The proof is entirely analogous to the proof of Lemma 5.11. The only further
observation that we require is that it is decidable whether, given a, b ∈ A and
x1, . . . , xm ∈ X, some finite meet of elements of the form α1x1 + · · · + αnxm for
α1, . . . , αm ∈ N lies in ↓ a − ↓ b. But this holds because each condition of the form∧

1≤j≤n
(αj,1xj,1 + · · ·+ αj,mxj,m) ≤ a

is equivalent to a Boolean combination of conditions of the forms

αj,1xj,1,i + · · ·+ αj,mxj,m,i < k,

αj,1xj,1,i + · · ·+ αj,mxj,m,i > k,

where xj,k,i := xj,k(i). We already saw in the proof of Lemma 5.11 that it is
decidable whether such coefficients α exist for any finite set of inequalities of these
forms. □

Theorem 7.22 (Decidability for Abelian ℓ-group cones with a ∧-conucleus).
The universal theory of Abelian ℓ-group cones with a ∧-conucleus is decidable.

Theorem 7.23 (Generation for Abelian ℓ-groups with a negative ∧-conucleus).
The variety of Abelian ℓ-groups with a negative ∧-conucleus is generated as:

Cx−∧ (AbLG) = UCx−∧ Pfin(Z).

Theorem 7.24 (Decidability for Abelian ℓ-groups with a negative ∧-conucleus).
The universal theory of Abelian ℓ-groups with a negative ∧-conucleus is decidable.

Theorem 7.25 (The Montagna–Tsinakis representation [37]).
The ∧-conuclear images of Abelian ℓ-groups (Abelian ℓ-group cones) are precisely the fully
distributive (integral) cancellative commutative residuated lattices.

Theorem 7.26 (Generation for fully distributive cancellative ICRLs).
The variety C∧(AbLG

−) of fully distributive cancellative ICRLs is generated as:

C∧(AbLG
−) = UC∧Pfin(Z

−).

Theorem 7.27 (Decidability for fully distributive cancellative ICRLs).
The universal theory of fully distributive cancellative ICRLs is decidable.

We now move on to the results of Section 6. To reproduce these results for
∧-conuclei, it suffices to make two observations. Firstly, given a ∧-conucleus 2
and a nucleus 3 on the conuclear residuated lattice ⟨A,2⟩, the restriction of 2 to
A3 is a ∧-conucleus. Secondly, given a meet preserving nucleus 3 on A and a
∧-conucleus 2 on A3, the conucleus 2x := 23x ∧ x is a ∧-conucleus.

Theorem 7.28. For each class K of distributive integral residuated lattices

Int(Cx∧(K)) = Cx∧(Int(K)), Int(C∧(K)) = C∧(Int(K)).
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Theorem 7.29 (The Young representation).
∧-conuclear MV-algebras are precisely the unit intervals of ∧-conuclear Abelian ℓ-group
cones. Consequently, the ∧-conuclear images of MV-algebras are precisely the unit inter-
vals of fully distributive cancellative ICRLs.

Theorem 7.30 (Generation for ∧-conuclear MV-algebras).
The variety of ∧-conuclear MV-algebras is generated as a universal class as follows:

Cx∧(MV) = UCx∧Pfin(Int(Z−)) = UCx∧(MVfin).

In particular, it has the Finite Embeddability Property.

Theorem 7.31 (Decidability for ∧-conuclear MV-algebras).
The universal theory of ∧-conuclear MV-algebras is decidable.

It remains an open problem to describe the ∧-conuclear images of MV-algebras.

8. JOIN PRESERVING CONUCLEI

In this final section, we consider join preserving conuclei and, as a related
matter, conuclei on totally ordered algebras. The results stated in this section will
be straightforward consequences of results proved in the previous sections. We in
particular recover the main result of Horčı́k [29].

Recall that a join preserving conucleus or a ∨-conucleus for short is a conucleus
which satisfies the equation 2(x ∨ y) = 2x ∨2y. The class operators C∨, Cx∨, and
Cx−∨ are defined as expected.

Lemma 8.1. Let ⟨A,2⟩ be a ∨-conuclear CRL. Then ⟨A,2⟩ is finitely subdirectly
irreducible if and only if A is finitely subdirectly irreducible.

Proof. This immediately follows from Lemmas 2.5 and 2.9, since 2x ∨2y = 1 for
x, y ≤ 1 in A is equivalent to 2(x ∨ y) = 1 and therefore to x ∨ y = 1. □

Recall that SemCRL denotes the variety of semilinear CRLs.

Lemma 8.2. Cx∨(K) = ISP(Cx∨(Kfsi)) for each variety K ⊆ CRL. If K ⊆ SemCRL,
then Cx∨(K) is the variety ISP(Cx(Kfsi)) of semilinear conuclear K-algebras.

Proof. The first claim follows immediately from Lemma 8.1, since Cx∨(K) is a
variety and therefore Cx∨(K) = ISP((Cx∨(K))fsi) = ISP(Cx∨(Kfsi)). If K ⊆
SemCRL, then Cx∨(Kfsi) = Cx(Kfsi), since each conucleus on a totally ordered
residuated lattice is a ∨-conucleus. □

In the following, we use the notation

Lex := {Lex(n, Z) | n ∈ N}.

Theorem 8.3 (Generation and decidability for totally ordered algebras).
The universal class of

(i) totally ordered conuclear Abelian ℓ-group cones is generated as:

Cx(AbLG−
fsi) = UCxS(Lex−).

(ii) totally ordered Abelian ℓ-groups with a negative conucleus is generated as:

Cx(AbLGfsi) = UCx−S(Lex).

(iii) totally ordered conuclear MV-algebras is generated as:

Cx(MVfsi) = UCxS(Int(Lex−)).
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(iv) totally ordered cancellative ICRLs is generated as:

C(AbLG−
fsi) = UCS(Lex−).

All of these universal classes have a decidable universal theory.

Proof. The right-to-left inclusions hold because the left-hand sides are universal
classes. It remains to prove the left-to-right inclusions.

(i): each finite partial subalgebra of each algebra in AbLG−
fsi has a weak ω-

embedding into Lex− by Lemma 5.7, so the inclusion Cx(AbLG−
fsi) ⊆ UCxS(Lex−)

follows by Lemmas 4.3 and 4.4 together with Lemma 3.7.
(ii): this follows immediately from (i) and Lemma 5.12.
(iii): Cx(MVfsi) = Cx(Int(AbLG−

fsi)) = Int(Cx(AbLG−
fsi)) ⊆ Int(UCxS(Lex−)) ⊆

UCxS(Int(Lex−)), using (i) and Lemma 6.2 and Theorem 6.5.
(iv): let Img be the class operator which maps a class of conuclear residuated

lattices ⟨A,2⟩ to the class of their conuclear images A2. Clearly C = Img Cx.
Then C(AbLG−

fsi) = Img Cx(AbLG−
fsi) ⊆ Img UCxS(Lex−) ⊆ U Img CxS(Lex−) =

UCS(Lex−) using (i), since Img commutes with I and with PU and Img S(K) ⊆
S Img(K) for each class K of conuclear residuated lattices.

The decidability of (i) is proved by replacing (Z−)k by Lex−(n, Z) in the proof
of Theorem 5.10 (more precisely, in the variant which uses Lemma 5.11). The
decidability of (ii) follows from the decidability of (i) by Lemma 5.12. The de-
cidability of (iii) follows from the decidability of (i) by the totally ordered case
of Theorem 6.7 and Lemma 6.9. Finally, the decidability of (iv) follows from the
decidability of (i) by Lemma 2.7. □

Recall that Q(K) := ISPPU(K) is the quasivariety generated by the class K.

Theorem 8.4 (Generation and decidability for semilinear algebras).
The variety of

(i) ∨-conuclear Abelian ℓ-group cones is generated as:

Cx∨(AbLG
−) = QCxS(Lex−).

(ii) Abelian ℓ-groups with a negative ∨-conucleus is generated as:

Cx−∨ (AbLG) = QCx−S(Lex).

(iii) ∨-conuclear MV-algebras is generated as:

Cx∨(MV) = QCxS(Int(Lex−)).

(iv) semilinear cancellative ICRLs is generated as:

C∨(AbLG
−) = QCS(Lex−).

All of these varieties have a decidable universal theory.

Proof. The right-to-left inclusions hold because the left-hand sides are varieties. It
remains to prove the left-to-right inclusions.

(i): Lemma 8.2 and Theorem 8.3(i) imply that Cx∨(AbLG
−) ⊆ QCx(AbLG−

fsi) ⊆
QUCxS(Lex−) = QCxS(Lex−).

(ii): this follows immediately from (i) and Lemma 5.12.
(iii): Lemma 8.2 and Theorem 8.3(iii) imply that Cx∨(MV) ⊆ QCx(MVfsi) ⊆

QUCxS(Int(Lex−)) = QCxS(Int(Lex−)).
(iv): this follows immediately from Theorem 8.3(iv).
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The decidability claim follows from Theorem 8.3 and Lemma 2.1. □

The generation and decidability result for semilinear cancellative ICRLs stated
in the above corollary is precisely the main decidability result of Horčı́k [29].

The question naturally arises whether considering conuclear expansions of non-
Archimedean totally ordered Abelian ℓ-groups is necessary, i.e. whether one may
replace Lex(n, Z) by Z, or at least by R. The following result shows that this is not
possible: the above generation results for totally ordered and semilinear algebras
require lexicographic powers of unbounded depth.

Theorem 8.5. For each n ∈ N:
(i) UCxS(Lex−(n, R)) ⊊ Cx(AbLG−

fsi).
(ii) UCx−S(Lex(n, R)) ⊊ Cx−(AbLGfsi).

(iii) UCxS(Int(Lex−(n, R))) ⊊ Cx(MVfsi).
(iv) UCS(Lex−(n, R)) ⊊ C(AbLG−

fsi).
Consequently, for each n ∈ N:

(v) QCxS(Lex−(n, R)) ⊊ Cx∨(AbLG
−).

(vi) QCx−S(Lex(n, R)) ⊊ Cx−∨ (AbLG).
(vii) QCxS(Int(Lex−(n, R))) ⊊ Cx∨(MV).

(viii) QCS(Lex−(n, R)) ⊊ C∨(AbLG
−).

Proof. Claims (v)–(viii) follow from claims (i)–(iv) by the analogue of Jónsson’s
Lemma for quasivarieties [20, Lemma 1.5], which states that for each class of
algebras K the relatively finitely subdirectly irreducible algebras in Q(K) in fact
lies in A ∈ U(K). For example, the inclusion QCxS(Lex−(n, R)) ⊆ Cx∨(AbLG

−) is
equivalent to the claim that each relatively finitely subdirectly irreducible algebra
of QCxS(Lex−(n, R)) is in Cx∨(AbLG

−), since Cx∨(AbLG
−) is a quasivariety. But

each such algebra lies in UCxS(Lex−(n, R)) by [20, Lemma 1.5], and conversely
each algebra in UCxS(Lex−(n, R)) is totally ordered and therefore finitely sub-
directly irreducible by Lemmas 2.5 and 8.1. The inclusion QCxS(Lex−(n, R)) ⊆
Cx∨(AbLG

−) is thus equivalent to UCxS(Lex−(n, R)) ⊆ Cx∨(AbLG
−). This is in

turn equivalent to UCxS(Lex−(n, R)) ⊆ Cx∨(AbLG
−
fsi), since AbLG−

fsi is the class of
totally ordered algebras in AbLG−.

Claim (i) follows from (iv), since a universal sentence valid in UCS(Lex−(n, R))
but not in C(AbLG−

fsi) yields a universal sentence valid in UCxS(Lex−(n, R)) but
not in Cx(AbLG−

fsi) by Lemma 2.7. On the other hand, the proof of (iv) is best
understood as a slight technical modification of the proof of (i). We therefore find
it instructive to start with a direct proof of (i).

(i): we show that there is a universal sentence ψn satisfied in CxS(Lex−(n, R))
but not in CxS(Lex−(n + 1), Z). We define this sentence as follows:

ϕ(x, y) := (y ≤ 2x) & (2y < y +2x),

ϕn(x0, . . . , xn+1) := ϕ(x0, x1) & ϕ(x1, x2) & . . . & ϕ(xn, xn+1),

ψn := ∀x0, . . . , xn+1 ¬ϕn(x0, . . . , xn+1).

We first show that if ϕ(a, b) holds in a totally ordered conuclear Abelian ℓ-group
cone ⟨G−,2⟩, then ω(2a) ≰ b. Suppose for the sake of contradiction that ϕ(a, b)
but ω(2a) ≤ b. Because b ≤ 2a, there is some k ∈ N such that (k + 1)(2a) < b ≤
k(2a). Observe that (k + 1)(2a) ∈ G−

2 , so (k + 1)(2a) ≤ 2b. But the inequality
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2b < b + 2a now implies that (k + 1)(2a) ≤ 2b < b + 2a ≤ k(2a) + 2a =
(k + 1)(2a), which is a contradiction.

Consequently, if there is no sequence a0, . . . , an+1 ∈ G−
2 such that ω(2ai) ≰ ai+1

for i ∈ {1, . . . , n}, then ⟨G−,2⟩ satisfies ψn. But ω(2ai) ≰ ai+1 implies ωai ≰ ai+1,
and there is indeed no sequence a0, . . . , an+1 ∈ Lex−(n, R) such that ωai ≰ ai+1.
Thus each algebra in CxS(Lex−(n, R)) satisfies ψn.

On the other hand, there is some sequence a0, . . . , an+1 ∈ Lex−(n + 1, Z) such
that ωai ≰ ai+1 for i ∈ {1, . . . , n}. Necessarily a0 := 0 and an+1 is cofinal in
Lex−(n + 1, Z). Let S := {2a0, . . . , 2an+1}. Then the conuclear residuated lattice
⟨Lex−(n+ 1, Z),2S⟩ ∈ CxS(Lex−(n+ 1, Z)) invalidates the universal sentence ψn
under the valuation xi 7→ ai, since ϕ(ai, ai+1) for each i ∈ {0, . . . , n}.

(ii): this follows from (i), since each universal sentence valid in CxS(Lex−(n, R))
but not in Cx(AbLG−

fsi) yields a universal sentence valid in Cx−S(Lex(n, R)) but
not in Cx(AbLGfsi) by the analogue of Lemma 2.7 for negative cones of conuclear
residuated lattices.

(iii): the proof of (i) also establishes (iii) if we replace + by ⊕ and take the
interval [2an+1, 0] in the last paragraph of the proof.

(iv): we show that there is a universal sentence ψn satisfied in CS(Lex−(n, R))
but not in CS(Lex−(n + 1), Z). We define this sentence as follows:

ϕ(x, u, v) := (u ∧ v ≤ u + x) & ((v ⊖ u) + u < (u ∧ v) + x),

ϕn(u0, v0, . . . , un+1, vn+1) := ϕ(v0 ⊖ u0, u1, v1) & . . . & ϕ(vn ⊖ un, un+1, vn+1),

ψn := ∀u0, v0, . . . , un+1, vn+1 ¬ϕn(u0, v0, . . . , un+1, vn+1).

By Theorem 5.16 each totally ordered cancellative ICRL has the form A := G−
2 ,

where G is a totally ordered Abelian ℓ-group and 2 is a conucleus on G−. Observe
that ϕ(c, a, b) holds in A if and only if

(b ⊖G−
a ≤ c) & (b ⊖A a < (b ⊖G−

a) + c),

since the inequality b∧ c ≤ b+ a is equivalent to 1∧ (c− b) ≤ a, and b+(c⊖A b) <
(b ∧ c) + a is equivalent to c ⊖A b < (1 ∧ (c − b)) + a.

We first show that if ϕ(c, a, b) holds in A, then ωc ≰ b ⊖A a. Observe that kc ≤
b ⊖A a if and only if kc ≰ b ⊖G−

a, since kc ∈ A. Suppose therefore for the sake
of contradiction that ϕ(c, a, b) holds in A but ωc ≤ b ⊖G−

a. Because b ⊖G−
a ≤ c

and ωc ≤ b ⊖G−
a, there is some k ∈ N such that (k + 1)c < b ⊖G−

a ≤ kc.
But the inequality b ⊖A a < (b ⊖G−

a) + c now implies that (k + 1)c < b ⊖A a <

(b ⊖G−
a) + c ≤ kc + c = (k + 1)c, which is a contradiction.

Consequently, if there is no sequence a0, b0, . . . , an+1, bn+1 ∈ A such that ωci ≰
ci+1 for i ∈ {0, . . . , n} for ci := bi ⊖ ai, then A satisfies ψn. But there is in fact no
sequence c0, . . . , cn+1 ∈ Lex−(n, R) whatsoever such that ωci ≰ ci+1. Thus each
algebra in CS(Lex−(n, R)) satisfies ψn.

On the other hand, there is some sequence c0, . . . , cn+1 ∈ G− := Lex−(n+ 1, Z)
such that ωci ≰ ci+1 for i ∈ {0, . . . , n}. Necessarily c0 := 0 and cn+1 is cofinal
in G−. Take ai, bi ≤ 2ci such that bi ⊖G−

ai = ci, with a0 := 0 and b0 := 0. Let
S := {2c0, . . . , 2cn+1, a0, b0, . . . , an+1, bn+1}. Take A := (G−)2S . Then bi ⊖A ai = ci,
so bi+1 ⊖G−

ai+1 ≤ ci and bi+1 ⊖A ai+1 < (bi+1 ⊖G−
ai+1) + ci. As we have seen,

these inequalities together are equivalent to ϕ(ci, ai+1, bi+1) being true in A. Thus
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A ∈ CS(Lex−(n+ 1, Z)) invalidates the universal sentence ψn under the valuation
xi 7→ bi ⊖A ai and ui 7→ ai and vi 7→ bi. □

Corollary 8.6. The variety Cx∨(MV) does not have the FEP.

Proof. Each finite algebra in Cx∨(MV) embeds into a product of totally ordered
finite algebras in Cx∨(MV) by Lemma 8.2. Each such totally ordered algebra lies
in CxS(Int(Lex−(n, R))), indeed in Cx(Int(Lex−(n, Z))), so each finite algebra in
Cx∨(MV) lies QCxS(Lex−(1, R)). Consequently, Cx(MV) fails to have the FEP by
Theorem 8.5. □
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